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1 Rings and Fields
May 6

1.1 Definition. A ring is a set R equipped with the operations +: R×R→ R and · : R×R→ R such that

(1) for all a, b, c ∈ R, (a+ b) + c = a+ (b+ c);

(2) for all a, b, c ∈ R, (a · b) · c = a · (b · c);

(3) for all a, b ∈ R, a+ b = b+ a;

(4) there exists 0 ∈ R such that a+ 0 = 0 + a = a for all a ∈ R;

(5) for all a ∈ R, there exists b ∈ R such that a+ b = 0 (we denote this b by −a);

(6) For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a.

1.2 Notation. The above axioms allow the the following notation.

(1) +(a, b) ≡ a+ b and ·(a, b) ≡ a · b ≡ ab.

(2) By associativity, a+ b+ c and abc are well-defined.

(3) For n ∈ N, an := aa · · · a︸ ︷︷ ︸
n times

and na := a+ a+ · · ·+ a︸ ︷︷ ︸
n times

.

(4) a+ (−b) ≡ a− b.

1.3 Example. The following are rings:

(a) Z, Q, R, and C

(b) Zn for n ∈ N

(c) R[x] and Mn(R) for any ring R

(d) R1 ⊕R2 := {(a, b) : a ∈ R1, b ∈ R2} for any rings R1 and R2.

1.4 Example. The following are not rings:

(a) the odd numbers, since there is no 0 element

(b) C(R) under pointwise addition and function composition, since distributivity breaks.

1.5 Definition. We also consider two special types of rings.

(1) We say a ring R is commutative if ab = ba for all a, b ∈ R.

(2) We say a ring R is unital if there exists 1 ∈ R such that 1a = a1 = a for all a ∈ R. We call 1 the unity,
or “one,” of R.

1.6 Example. 2Z is a non-unital, commutative ring. Mn(2Z) is a non-unital, non-commutative ring.

1.7 Convention. Only the trivial ring is allowed to have trivial multiplication, i.e., ab = 0 for all a, b ∈ R.
Furthermore, the trivial ring is not unital.

May 8
1.8 Definition. Let R be a commutative ring. We say a ∈ R is a zero divisor if a 6= 0 and there exists
b 6= 0 such that ab = 0.

1.9 Example. In Z6, 2 and 3 are zero divisors, since 2 · 3 = 0.

1.10 Remark. For any a ∈ Zn, a is a zero divisor if and only if gcd(a, n) 6= 1 and a 6= 0.

1.11 Definition. A ring R is an integral domain if R is commutative and unital and has no zero divisors.

1.12 Example. The following are integral domains:
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(a) Z, Q, R, C

(b) Zp, where p is prime

(c) R[x] for any integral domain R.

1.13 Example. The following are not integral domains:

(a) Zn, where n > 1 is not prime (zero divisors)

(b) Mn(R), where n > 1 (not commutative)

(c) 2Z (not unital)

(d) R⊕ R (zero divisors).

1.14 Proposition. Let R be an integral domain. If a, b, c ∈ R with a 6= 0 and ab = ac, then b = c.

Proof. Since ab = ac, ab− ac = 0, so a(b− c) = 0. Since a 6= 0 and R is an integral domain, we must have
b− c = 0, i.e., b = c.

1.15 Remark. The above is true in any commutative ring when a is not a zero divisor.

1.16 Definition. Let R be a commutative, unital ring. We say a ∈ R is a unit (or is invertible) if there
exists b ∈ R such that ab = 1. We call b the inverse of a and write b = a−1. We denote the set (group) of
units of R by R× or U(R).

1.17 Example. Let 1 < n ∈ Z.

(a) If n is prime, then U(Zp) = Zp \ {0}.

(b) In general, Z×n = {a ∈ Zn : gcd(a, n) = 1}.

1.18 Remark. If a ∈ R×, then a is not a zero divisor, since a 6= 0 and ab = 0 implies a−1ab = 0, i.e., b = 0.

1.19 Definition. A ring F is a field if F is commutative and unital and every non-zero element is a unit.

1.20 Example. The following are fields:

(a) Zp, where p is prime

(b) Q, R, C

(c) Q
(√

2
)

(d) F (x), the set of rational functions over F , where F is a field.

1.21 Proposition. Every field is an integral domain.

Proof. If F is a field, then F is commutative and unital by definition. Furthermore, since every non-zero
element is a unit, F has no zero divisors by 1.18. Thus F is an integral domain.

1.22 Remark. The converse of 1.21 is not true: Z and F [x] for any field F are integral domains but not
fields.

1.23 Definition. Let R be a unital ring. We define the characteristic of R to be the least positive integer
n such that n = 0 in R. That is,

n := n · 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If no such n exists, we say that R has characteristic 0. Our notation is char(R) = 0 or char(R) = n.

1.24 Example. If R = Z4[x], then char(R) = 4.

1.25 Remark. Let R be a ring with characteristic 0. Then each of 1, 2, 3, . . . is distinct, and thus R is infinite.
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1.26 Proposition. If R is an integral domain, then char(R) = 0 or char(R) = p, where p is prime.

Proof. If char(R) = n 6= 0 and n is not prime, then n = ab when a, b < n, and thus ab = 0 in R. But R has
not zero divisors, so n must be either 0 or prime.

1.27 Example. If R = Zp(x), then char(R) = p.

1.28 Definition. Let (R,+, ·) be a ring. We say that S ⊆ R is a subring of R if (S,+, ·) forms a ring.

1.29 Example. Z, Q, R, and Q
(√

2
)

are all subrings of C.
May 10

1.30 Proposition (Subring Test). Let R be a ring and let ∅ 6= S ⊆ R. Then S is a subring of R if and
only if

(1) for all a, b ∈ S, a− b ∈ S

(2) for all a, b ∈ S, ab ∈ S.

Proof. Clearly if S is a subring of R, then conditions (1) and (2) hold. Conversely, suppose conditions (1)
and (2) hold. Let a, b ∈ S. Then 0 = a − a ∈ S, so 0 ∈ S. Additionally, 0 − b = −b ∈ S, so S contains
additive inverses. Finally, a+ b = a− (−b) ∈ S and ab ∈ S, so S is closed under the operations of R.

1.31 Example. We claim that Q
(√

2
)

= {a+ b
√

2 : a, b ∈ Q} is a subfield of R. Indeed, Q(
√

2) is a subring

of R by the subring test, and for any 0 6= a+ b
√

2 ∈ Q
(√

2
)
,

(
a+ b

√
2
)−1

=
a− b

√
2

a2 − 2b2
.

Note that a2 − 2b2 6= 0 by the irrationality of
√

2.

1.32 Definition. Let R be a ring. A subring I of R is an ideal of R if for all a ∈ I, r ∈ R, ar, ra ∈ I.

1.33 Example. nZ is an ideal of Z.

1.34 Example. Let R = C(R). Then I = {f(x) ∈ R : f(2) = 0} is an ideal of R.

1.35 Example. R is a subring of C but not an ideal.

1.36 Remark. If F is a field, then the only ideals of F are {0} and F .

1.37 Definition. Let R be a commutative, unital ring. The ideal 〈x〉 := {rx : r ∈ R} is called the principal
ideal of R generated by x.

1.38 Proposition (Division Algorithm). Let F be a field. For all f(x), g(x) ∈ F [x] with g(x) 6= 0, there
exist unique q(x), r(x) ∈ F [x] such that f(x) = g(x)q(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x).

Proof. MATH 145.

1.39 Proposition. Let F be a field. Every ideal of F is principal.

Proof. Let I be an ideal of F [x]. If I = {0}, then I = 〈0〉. Otherwise, let g(x) ∈ I be nonzero of minimal
degree in I. We claim that I = 〈g(x)〉.

Clearly 〈g(x)〉 ⊆ I. We now show that I ⊆ 〈g(x)〉. Let f(x) ∈ I. By the Division Algorithm, there
exist q(x), r(x) ∈ F [x] so that f(x) = g(x)q(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x). But
r(x) = f(x) − g(x)q(x), and f(x), g(x)q(x) ∈ I, so deg r(x) ≥ deg g(x) by minimality. Thus r(x) = 0, so
f(x) = g(x)q(x) ∈ 〈g(x)〉. Hence I ⊆ 〈g(x)〉, and in fact I = 〈g(x)〉.

4



MATH 245 Notes Spencer Wilson

2 Polynomials of Linear Operators
May 13

2.1 Notation. Throughout this section, unless otherwise stated, F is a field and V is a finite-dimensional
vector space over F .

2.2 Definition. For A ∈ Mn(F ), the characteristic polynomial of A is det(A − xI). For T : V → V , the
characteristic polynomial of T is det([T ]β − xI), where β is any basis for V .

2.3 Definition. Let T be a linear operator. We say a subspace W ≤ V is T -invariant if T (W ) ⊆W .

2.4 Remark. If W is T -invariant, then TW : W →W is well-defined.

2.5 Example. Consider T : R2 → R2, T (x, y) = (x+ 2y, 4y−x). Then W = {(x, x) : x ∈ R} is T -invariant.

2.6 Example. Let T : V → V be a linear operator, and let λ be an eigenvalue for T . If v ∈ Eλ, then
T (T (v)) = T (λ(v)) = λT (v), so T (v) ∈ Eλ. Thus Eλ = {v ∈ V : T (v) = λv} is T -invariant.

2.7 Definition. Let T : V → V be a linear operator. Let 0 6= x ∈ V . The subspace

WT,x := Span
{
x, T (x), T 2(x), . . .

}
is called the T -cyclic subspace generated by x.

2.8 Remark. WT,x is the smallest T -invariant subspace of V containing x.

2.9 Proposition. Let T : V → V be a linear operator. Let W ≤ V be T -invariant. Then the characteristic
polynomial of TW divides the characteristic polynomial of T .

Proof. Let β = {v1, v2, . . . , vm} be a basis for W . Say [TW ]β = A. Extend β to a basis

γ = (v1, v2, . . . , vm, vm+1, . . . , vn)

for V . Say [T ]γ = B. Then

B =

[
A ?
0 A′

]
,

so det(B−xI) = det(A−xI) det(A′−xI). Thus the characteristic polynomial of TW divides the characteristic
polynomial of T .

2.10 Proposition. Let T : V → V be a linear operator and v ∈ V 6= 0. Let W = WT,v, and say dimW = k.

(1)
{
v, T (v), T 2(v), . . . , T k−1(v)

}
is a basis for W .

(2) If f(x) = xk + ak−1x
k−1 + · · ·+ a1x+ a0 ∈ F [x] and f(T )(v) = 0, then the characteristic polynomial

of TW is (−1)kf(x).

Proof.

(1) Let j ∈ N be maximal so that β =
{
v, T (v), . . . , T j−1(v)

}
is linearly independent. (Note that since

v 6= 0, j must exist.) We claim that j = k.

Let U = Spanβ. We will show that U = W . Now, since
{
v, T (v), . . . , T j−1(v), T j(v)

}
is linearly

dependent, T j(v) ∈ U . Thus U is T -invariant. Since W = WT,v is the smallest T -invariant subspace
of V containing v, W ⊆ U . But clearly U ⊆W , so U = W , and thus j = k.

(2) From (1), β =
{
v, T (v), . . . , T k−1(v)

}
is a basis for W . Moreover, f(T )(v) = 0, so

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0,

i.e., T k(v) = −a0v − a1T (v)− · · · − ak−1T k−1(v). Therefore,

[TW ]β =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

0 0 · · · 1 −ak−1

 .
By Assignment 1, the characteristic polynomial of TW is (−1)kf(x).
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2.11 Theorem (Cayley-Hamilton). If T : V → V is a linear operator and f(x) ∈ F [x] is its characteristic
polynomial, then f(T ) = 0. May 15

Proof. Let T : V → V be a linear operator and f(x) ∈ F [x] be its characteristic polynomial. Since f(T ) is
linear, f(T )(0) = 0. Let 0 6= v ∈ V . We claim that f(T )(v) = 0.

Let W = WT,v and say dimW = k. Since
{
v, T (v), . . . , T k−1

}
is a basis for W by 2.10, the set{

v, T (v), . . . , T k−1(v), T k(v)
}

is linearly dependent. Thus there exist a0, . . . , ak ∈ F , not all 0, such that

a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + akT

k(v) = 0.

We may assume without loss of generality that ak = 1. Let g(x) = xk + ak−1x
k−1 + · · ·+ a1x+ a0, so that

g(T )(v) = 0. Since deg g(x) = k, the characteristic polynomial of TW is h(x) = (−1)kg(x) by 2.10. Since
h(x)|f(x) by 2.9 and h(T )(v) = (−1)kg(T )(v) = 0, it follows that f(T )(v) = 0. Thus f(T ) = 0.

2.12 Remark. Let T : V → V be a linear operator. I = {f(x) ∈ F [x] : f(T ) = 0} is an ideal of F [x] and
hence a principal ideal generated by some polynomial of least degree in I. Note that if a(x), b(x) ∈ F [x] and
〈a(x)〉 = 〈b(x)〉, then a(x) = cb(x) for some 0 6= c ∈ F . Thus there is only one monic polynomial of least
degree in I, i.e., only one monic m(x) such that I = 〈m(x)〉.

2.13 Definition. We call the polynomial m(x) from 2.12 the minimal polynomial for T .

2.14 Remark. Suppose f(x) ∈ F [x] such that f(T ) = 0. Then m(x)|f(x). In particular, m(x) divides the
characteristic polynomial of T by the Cayley-Hamilton Theorem.

2.15 Remark. We similarly define the minimal polynomial of A ∈ Mn(F ) to be the unique monic m(x) of
least degree such that m(A) = 0.

2.16 Proposition. Let T : V → V be a linear operator with minimal polynomial m(x) and characteristic
polynomial f(x). Then m(x) and f(x) have the same roots in F .

Proof. First note that since m(x)|f(x), every root of m(x) is a root of f(x). If T has no eigenvalues, then f(x)
is irreducible, and thus f(x) = (−1)km(x), and obviously every root of f(x) is a root of m(x). Otherwise,
let λ be an eigenvalue of T . We claim that m(λ) = 0.

Let 0 6= v ∈ V be an eigenvector for λ. Then m(λ)v = m(λv) = m(T (v)) = m(T )(v) = 0(v) = 0. Since
v 6= 0, it follows that m(λ) = 0. Thus every root of f(x) is a root of m(x), and we’re done.

2.17 Example. Let V = P2(R) = {f(x) ∈ R[x] : deg f(x) ≤ 2}. Consider T : V → V , T (g(x)) =
g′(x) + 2g(x). Let β = {1, x, x2} be a basis for V . Then T (1) = 2, T (x) = 1 + 2x, and T

(
x2
)

= 2x+ 2x2, so

A = [T ]β =

2 1 0
0 2 2
0 0 2

 .
Thus the characteristic polynomial of T is −(x − 2)3. The minimal polynomial m(x) of T must be x − 2,
(x− 2)2, or (x− 2)3. Note that A− 2I 6= 0, and

(A− 2I)2 =

0 1 0
0 0 2
0 0 0

2

=

0 0 2
0 0 0
0 0 0

 6= 0,

so m(x) = (x− 2)3.
May 17

2.18 Example. Let

A =

3 −1 0
0 2 0
1 −1 2

 .

6
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Then the characteristic polynomial of A is

det(A− xI) =

∣∣∣∣∣∣
3− x −1 0

0 2− x 0
1 −1 2− x

∣∣∣∣∣∣ = (3− x)(2− x)2 = −(x− 3)(x− 2)2.

So m(x) = (x− 3)(x− 2)2 or (x− 3)(x− 2). But

(A− 3I)(A− 2I) =

0 −1 0
0 −1 0
1 −1 −1

 ·
1 −1 0

0 0 0
1 −1 0

 =

0 0 0
0 0 0
0 0 0

 ,
so m(x) = (x− 3)(x− 2).

2.19 Definition. Let T : V → V be a linear operator. We say that V is T -cyclic if there exists 0 6= v ∈ V
such that V = WT,v.

2.20 Proposition. Let T : V → V be a linear operator. If dimV = n and V is T -cyclic, then the char-
acteristic polynomial f(x) and the minimal polynomial m(x) for T have the same degree. In particular,
f(x) = (−1)nm(x).

Proof. Suppose V = WT,v for some 0 6= v ∈ V . Recall that
{
v, T (v), . . . , Tn−1(v)

}
is a basis for V . Let

g(x) = a0+a1x+· · ·+akxk ∈ F [x] with ak 6= 0 and k < n. Since
{
v, T (v), . . . , T k(v)

}
is linearly independent,

a0v + a1T (v) + · · · + akT
k(v) 6= 0, i.e., g(T )(v) 6= 0. Therefore g(T ) 6= 0, and hence degm(x) ≥ n. But

m(x)|f(x), so degm(x) = n, and since m(x) is monic, f(x) = (−1)nm(x).

2.21 Theorem. Let T : V → V be a linear operator. Then T is diagonalizable if and only if the minimal
polynomial m(x) of T is of the form m(x) = (x− λ1)(x− λ2) · · · (x− λk), where λ1, λ2, . . . , λk ∈ F are the
distinct eigenvalues of T .

Proof. (⇒) Suppose T is diagonalizable. Then let β = {v1, v2, . . . , vn} be a basis of eigenvectors of T for V .
Let p(x) = (x − λ1)(x − λ2) · · · (x − λk), where λ1, λ2, . . . , λk are the distinct eigenvalues of T . We claim
that m(x) = p(x).

Since each eigenvalue is a root of the minimal polynomial of T , p(x)|m(x). Choose vi ∈ β. Then T (vi) =
λjvi for some 1 ≤ j ≤ k. In particular, (T − λjI)(vi) = 0. But then since x− λj |p(x), p(x) = qj(x)(x− λj),
where qj(x) ∈ F [x]. Then p(T )(vi) = qj(T )(T − λjI)(vi) = qj(T )(0) = 0. Since vi ∈ β was arbitrary,
p(T ) = 0. Therefore m(x)|p(x). Since p(x) is monic, m(x) = p(x).

(⇐) Suppose m(x) = (x−λ1)(x−λ2)(x−λk), where λ1, λ2, . . . , λk are the distinct eigenvalues of T . We
proceed by induction on n = dimV .

If n = 1, then T is clearly diagonalizable. If n > 1, assume the result for all vector spaces over F with
dimension less than n. Let W = Range(T − λkI). Now Eλk

= Null(T − λkI) 6= {0}, so dimW < n by the
Rank-Nullity Theorem. Moreover, since T commutes with both itself and λI, W is T -invariant.

Consider TW : W → W . Since the minimal polynomial for TW divides m(x), TW is diagonalizable by
assumption. Let β = {v1, v2, . . . , vm} be a basis for W of eigenvectors of TW . Let γ = {w1, w2, . . . , w`} be a
basis for Null(T − λkI) = Eλk

. May 22

By the Rank-Nullity Theorem, dimV = n = m+ `. Let y ∈ W . Then y = (T − λk)(x) for some x ∈ V .
Then m(T )(x) = (T−λ1I)(T−λ2I)(T−λk−1I)(y) = 0. Therefore, (TW−λ1I)(TW−λ2I) · · · (TW−λk−1I) =
0, so the minimal polynomial for TW divides (x− λ1)(x− λ2) · · · (x− λk−1). Hence λk is not an eigenvalue
of TW . Therefore, W ∩ Eλk

= ∅, and in particular W ∩ γ = ∅. Thus β ∪ γ is linearly independent, and
hence β ∪ γ is a basis of eigenvectors of T for V . Thus T is diagonalizable.

2.22 Example. Let A ∈ Mn(C) such that Am = I. Then m(x)|xm − 1. But xm − 1 has m distinct roots
1, ζm, ζ

2
m, . . . , ζ

m−1
m , where ζm = e2πi/m, so m(x) splits over C and has distinct roots over C. By 2.21, A is

diagonalizable.

7
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3 Jordan Canonical Form

3.1 Generalized Eigenvectors and Eigenspaces

3.1.1 Notation. In keeping with 2.1, throughout this section, F is a field and V is a finite-dimensional vector
space over F , unless otherwise stated.

3.1.2 Definition.

(1) A ∈Mn(F ) is a Jordan block if

A =


λ 1

λ 1
. . .

. . .

λ 1
λ

 .

(2) J ∈Mn(F ) is a Jordan matrix if

J =


A1

A2

. . .

Ak

 ,
where A1, A2, . . . , Ak are Jordan blocks.

3.1.3 Example.

J =


2 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 3 1 0
0 0 0 0 3 1
0 0 0 0 0 3


is a Jordan matrix with Jordan blocks

[
2
]
,

[
2 1
0 2

]
,

3 1 0
0 3 1
0 0 3

 .
Say [T ]β = J , where T : V → V is a linear operator and β = {v1, v2, . . . , v6} is a basis for V . Then we have

i T (vi) (T − 2I)(vi) (T − 2I)2(vi) (T − 3I)(vi) (T − 3I)2(vi) (T − 3I)3(vi)
1 2v1 0 0 ? ? ?
2 2v2 0 0 ? ? ?
3 v2 + 2v3 v2 0 ? ? ?
4 3v4 ? ? 0 0 0
5 v4 + 3v5 ? ? v4 0 0
6 v5 + 3v6 ? ? v5 v4 0

May 24
3.1.4 Example. Suppose T : V → V is a linear operator such that for some basis β = {v1, v2, . . . , v6} we
have:

i 1 2 3 4 5 6
T (vi) 5v1 3v2 v2 + 3v3 v3 + 3v4 2v5 v5 + 2v6

Then

A = [T ]β =


5 0 0 0 0 0
0 3 1 0 0 0
0 0 3 1 0 0
0 0 0 3 0 0
0 0 0 0 2 1
0 0 0 0 0 2


8
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Also note that v1 ∈ E5 = Null(A − 5I), v2 ∈ E3 = Null(A − 3I), v3 ∈ Null(A − 3I)2, v4 ∈ Null(A − 3I)3,
v5 ∈ Null(A− 2I), v6 ∈ Null(A− 2I)2.

3.1.5 Definition. Let T : V → V be a linear operator whose characteristic polynomial splits over F . Let λ
be an eigenvalue of T .

(1) We say that 0 6= v ∈ V is a generalized eigenvector of T is (T − λI)p(v) = 0 for some p ∈ N.

(2) We define Kλ := {k ∈ V : ∃ p ∈ N, (T − λI)p(v) = 0} to be the generalzed eigenspace of V .

3.1.6 Remark. Equivalently, Kλ =
⋃∞
i=1 Null(T − λI)i.

3.1.7 Proposition. Let T : V → V be a linear operator whose characteristic polynomial splits over F and
λ an eigenvalue for T . Then Kλ is a T -invariant subspace which contains Eλ.

Proof. Assignment 4.

3.1.8 Proposition. Let T : V → V be a linear operator whose characteristic polynomial splits over F .
Suppose λ 6= µ be eigenvalues for T . Then T − λI : Kµ → Kµ is one-to-one. In particular, Kλ ∩Kµ = {0}.

Proof. Let 0 6= x ∈ Kµ, and suppose x ∈ Eλ. Let p ∈ N be minimal so that (T − µI)p(x) = 0. If p = 1,
x ∈ Eµ, so x ∈ Eµ ∩ Eλ = {0}, and thus x = 0, which is a contradiction.

If p > 1, consider y = (T−µI)p−1(x) 6= 0. Note that since x ∈ Eλ and Eλ is T− and λI-invariant, y ∈ Eλ.
Then (T − µI)(y) = (T − µI)p(x) = 0, so y ∈ Eµ. But since y ∈ Eλ ∪ Eµ, y = 0, which is a contradiction.
Therefore Null(T − λI) = 0, so T − λI : Kµ → Kµ is injective. It follows then that (T − λI)p : Kµ → Kµ is
injective for all p ∈ N. Thus Kµ ∩Null(T − λI)p = {0} for all p ∈ N , i.e., Kµ ∩Kλ = 0.

3.1.9 Proposition. Let T : V → V be a linear operator whose characteristic polynomial splits over F .
Suppose λ is an eigenvalue for T with multiplicity m. Then dimKλ ≤ m and Kλ = Null(T − λI)m.

Proof. Let W = Kλ and consider TW : W → W . Let f(x) be the characteristic polynomial of T and g(x)
the characteristic polynomial of TW . Recall that g(x)|f(x). Also, if µ 6= λ is an eigenvalue of T , then
(T − µI) : W →W is injective, if (T − µI)(v) = 0 for some v ∈W , then v = 0. Thus, the only eigenvalue of
TW is λ. Therefore g(x) = (−1)d(x− λ)d, where d = dimW . Since g(x)|f(x), dimW = d ≤ m.

It is clear that W = Kλ ⊇ Null(T − λI)m. By the Cayley-Hamilton Theorem, (TW − λI)d = 0. Let
w ∈W . Then (TW − λI)m(w) = (T − λI)m(w) = (T − λI)m−d(T − λI)d(w) = (T − λI)m−d(0) = 0. Hence
W ⊆ Null(T − λI)m, so we’re done.

3.1.10 Proposition. Let T : V → V be a linear operator whose characteristic polynomial splits over F . Let
λ1, λ2, . . . , λk be the distinct eigenvalues of T . For all x ∈ V , there exist v1 ∈ Kλ1

, v2 ∈ Kλ2
, . . . vk ∈ Kλk

such that x = v1 + v2 + · · ·+ vk.
May 27

Proof. By induction on k. Suppose k = 1 and λ = λ1. Then the characteristic polynomial for T is
(−1)d(x− λ)d, where d = dimV . By the Cayley-Hamilton Theorem, (T − λI)d = 0. Thus Kλ = V , and the
result follows: take x = x.

Inductively, assume the result for operators with fewer than k eigenvalues. Let m be the multiplicity of
λk and let W = Range(T − λkI)m. Note that W is T -invariant. Recall that for i < k, (T − λk) : Kλi

→ Kλi

is injective, so (T −λk)m : Kλi
→ Kλi

is injective. In particular, (T −λkI)m(Kλi
) ⊆ Kλi

. But dimKλi
<∞,

so (T − λkI)m : Kλi
→ Kλi

is also surjective by the Rank-Nullity Theorem. Thus (T − λkI)m(Kλi
) = Kλi

,
so Kλi ⊆W = Range(T − λkI)m. Thus λ1, λ2, . . . , λk−1 are eigenvalues of TW : W →W . By the argument
in the second half of 2.21, it follows that λk is not an eigenvalue of TW . Let x ∈ V . By assumption, we know
that (T − λk)m(x) = w1 + w2 + · · · + wk−1, where wi ∈ Kλi

. Since (T − λkI)m is onto, for every wi there
exists vi ∈ Kλi

such that (T − λkI)m(vi) = wi. Then

(T − λkI)m(x) = (T − λkI)m(v1) + · · ·+ (T − λkI)m(vk−1),

so
(T − λkI)m(x− v1 − v2 − · · · − vk−1) = 0,

implying that x − v1 − v2 − · · · − vk−1 ∈ Null(T − λkI)m. Thus x = v1 + v2 + · · · + vk−1 + vk for some
vk ∈ Null(T − λkI)m = Kλk

. This completes the proof.

9
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3.1.11 Theorem. Let T : V → V be a linear operator whose characteristic polynomial splits over F . Let
λ1, λ2, . . . , λk be distinct eigenvalues for T with multiplicities m1,m2, . . . ,mk respectively. For each 1 ≤ i ≤
k, let βi be a basis for Kλi

. Then

(1) βi ∩ βj = ∅ when i 6= j.

(2) β := β1 ∪ β2 ∪ · · · ∪ βk is a basis for V .

(3) dimKλi
= mi.

Proof.

(1) Kλi
∪Kλj

= {0} when i 6= j by 3.1.8, and thus βi ∩ βj = ∅.

(2) By (1), β is linearly independent. Also, β spans V by 3.1.10. Thus β is a basis for β.

(3) dimV = |β| = |β1| + |β2| + · · · + |βk| ≤ m1 + m2 + · · · + mk = dimV , and thus mi = |βi| = dimKλi

for all 1 ≤ i ≤ k.

3.2 Finding the Jordan Canonical Form of a Matrix

3.2.1 Algorithm. Let T : V → V be a linear operator with characteristic polynomial

f(x) = (−1)n
k∏
i=1

(x− λi)m1 .

(1) Let A = [T ]σ, where σ is the standard basis for V , and let J be a Jordan matrix which is similar to A.

(2) Fix λ = λ1. Compute d1 := dim Null(A− λI) = dimEλ. Say a basis for Null(A− λI) is γ1. Since we
use γ1 to make the first columns of the λ-Jordan blocks, d1 is the number of λ-Jordan blocks in J .

(3) Compute d2 := dim Null(A − λI)2. We then extend γ1 to a basis γ2 for Null(A − λI)2 by solving
(A− λI)x = v for each v ∈ γ1. Since we use γ2 \ γ1 to make our second colums, d2 − d1 is the number
of λ-Jordan blocks of size at least 2× 2.

May 29

(4) Compute d3 = dim Null(A−λI)3. Then d3−d2 is the number of λ-Jordan blocks of size at least 3× 3.

(5) Continue in this fashion until d` = m1 = dimKλ, and thus γ` is a basis for Kλ.

(6) Repeat for λ2, . . . , λk. If βi is a basis for each Kλi
, then β = β1 ∪ β2 ∪ · · · ∪ βk is a basis for V .

(7) If the βis are computed as above, then [T ]β = J , and A = PJP−1, where P = [I]σβ and J is a Jordan
matrix.

3.2.2 Remark. Any J computed in this way is called “the” Jordan Canonical Form of T (or A). It is unique
up to reordering of the Jordan blocks.

3.2.3 Example. Let

A =

[
3 −2
8 −5

]
.

Then f(x) = (x+ 1)2, so λ = −1. We have

Null(A− λI) = Null(A+ I) = Null

([
1 −1/2
0 0

])
= Span

([
1/2
1

])
.

Thus d1 = 1 and

γ1 =

{[
1
2

]}
.

10
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We now know that

J =

[
−1 1
0 −1

]
.

Solving

(A+ I)v =

[
1
2

]
we get

v =

[
1/4
0

]
.

Thus

γ2 =

{[
1
2

]
,

[
1/4
0

]}
= β,

so

P = [I]σβ =

[
1 1/4
2 0

]
.

3.2.4 Example. Let

A =

 3 1 −2
−1 0 5
−1 −1 4

 .
Then f(x) = −(x− 3)(x− 2)2, so λ1 = 3, λ2 = 2, m1 = 1 and m2 = 2.

λ1 = 3: Then 1 ≤ d1 = dim Null(A− 3I) ≤ 1, so d1 = 1 and our Jordan block must be [3].
λ2 = 2: Then 1 ≤ d1 = dim Null(A− 2I) ≤ 2. Note that

A− 2I =

 1 1 −2
−1 −2 5
−1 −1 2

 ,
so inspecting the rows of A − 2I shows that rank(A − 2I) = 2 and hence d1 = 1. Thus our Jordan block
must be [

2 1
0 2

]
,

and

J =

3 0 0
0 2 1
0 0 2

 .
3.2.5 Example. Let T : P2(R) → P2(R), T (f(x)) = 2f(x) − f ′(x). Then σ = {x2, x, 1}. Find a Jordan
Canonical basis for T , i.e., a basis β such that [T ]β = J .

[T ]σ =

 2 0 0
−2 2 0
0 −1 2

 ,
so f(x) = −(x− 2)3. Note that (T − 2I)(f(x)) = 0 ⇐⇒ 2f(x)− f ′(x)− 2f(x) = 0 ⇐⇒ −f ′(x) = 0, so a
basis for Null(T − 2I) is {1} = {v1} and hence d1 = 1. So we must have

J =

2 1 0
0 2 1
0 0 2

 .
Similarly, (T − 2I)(f(x)) = 1 ⇐⇒ −f ′(x) = 1, so we can take v2 = −x. Finally, (T − 2I)(f(x)) = −x ⇐⇒
−f ′(x) = −x, so we can take v3 = 1

2x
2. Thus (v1, v2, v3) =

(
1,−x, 12x

2
)

is a Jordan Canonical basis for T .
Then [T ]σ = P [T ]βP

−1, where

P =

0 0 1/2
0 −1 0
1 0 0

 .
11
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3.2.6 Example. Let T : M2(R)→M2(R), where May 31

T (A) =

[
1 1
0 1

]
A.

Then

σ =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

[T ]σ =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ,
so f(x) = (x−1)4. Then with λ = 1, d1 = dim Null(A− I) = 4− rank(A− I) = 2, so we must have 2 Jordan
blocks. Also, d2 = dim Null(A− I)2 = dim Null(0) = 4, so d2− d1 = 4− 2 = 2, and thus both Jordan blocks
must be 2× 2. So,

J =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .
3.2.7 Proposition. Let T : V → V be a linear operator with minimal polynomial

m(x) =

k∏
i=1

(x− λi)mi ,

where λ1, λ2, . . . , λk are the distinct eigenvalues of T . Then mi is the size of the largest λi-Jordan block in
the Jordan Canonical Form of T .

Proof. Let [T ]σ = A. Then A = PJP−1, where

J =


J1

J2
. . .

J`

 ,
where each Ji is a Jordan block corresponding to some eigenvalue for T . Then

0 = m(J) =


m(J1)

m(J2)
. . .

m(J`)

 ,
so M(Ji) = 0 for all i.

Fix λi and let Ji be a λi-Jordan block. For any j 6= i, det(Ji − λjI) 6= 0, since λi − λj 6= 0. Thus

0 = m(Ji) = (Ji − λiI)mi

∏
j 6=i

(Ji − λj)mj .

But since det(Ji − λjI) 6= 0 for any j 6= i, Ji − λjI is invertible for each j 6= i. Thus we must have
(Ji − λiI)mi = 0. But then 

0 1
0 1

. . .
. . .

0 1
0


mi

= 0.

Note that if Ji − λI is p × p, then (Ji − λi)p = 0. By the minimality of m(x), mi must be the size of the
largest λi-Jordan block.

12
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4 Inner Product Spaces

4.1 Foundations

4.1.1 Convention. Throughout Section 4, we shall use F to denote either R or C, and V to denote a (possibly
infinite-dimensional) vector space over F .

4.1.2 Definition. An inner product on a vector space V is a map 〈·, ·〉 : V × V → F such that for all
x, y, z ∈ V, α ∈ F ,

(1) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

(2) 〈αx, y〉 = α〈x, y〉

(3) 〈y, x〉 = 〈x, y〉

(4) 〈x, x〉 ∈ R, 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇐⇒ x = 0.

4.1.3 Remark. The following are immediate from the definition of inner product:

(1) 〈x, x〉 = 〈x, x〉, so 〈x, x〉 ∈ R

(2) 〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈x, y〉+ 〈x, z〉

(3) 〈x, αy〉 = 〈αy, x〉 = α〈y, x〉 = α〈x, y〉

(4) 〈x, 0〉 = 0〈x, 0〉 = 0

(5) 〈0, x〉 = 0〈0, x〉 = 0.

4.1.4 Definition. If V is equipped with an inner product, we call V an inner product space.

4.1.5 Proposition. Let V be an inner product space. If y, z ∈ V and for all x ∈ V , 〈x, y〉 = 〈x, z〉 then
y = z. In particular, if 〈x, y〉 = 0 for all x ∈ V , then y = 0.

Proof. Suppose y, z ∈ V satisfy the condition in the proposition statement. Then for all x ∈ V ,

〈x, y〉 = 〈x, z〉 =⇒ 〈x, y〉 − 〈x, z〉 = 0 =⇒ 〈x, y − z〉 = 0.

In particular, 〈y − z, y − z〉 = 0, which implies that y − z = 0, i.e., y = z.
June 3

4.1.6 Example. Let V = Fn. The standard inner product, or dot product is given by

v · w := 〈v, w〉 =

n∑
i=1

viwi,

for any vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) in Fn. Additionally, any real scalar multiple
of the dot product also forms an inner product on Fn, e.g., 〈v, w〉′ = 2〈v, w〉.

4.1.7 Example. Let V = C[a, b]. An inner product on V is given by

〈f, g〉 =
1

b− a

ˆ b

a

f(x)g(x) dx.

4.1.8 Definition. Let A = (aij) ∈ Mn(F ). The adjoint (or conjugate transpose) of A is A∗ ∈ Mn(F )
defined by A∗ = (aji).

4.1.9 Example. If

A =

[
1− i 2 + i
i 4

]
,

then

A∗ =

[
1 + i −i
2− i 4

]
.

13
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4.1.10 Example. Let V = Mn(F ). The Frobenius inner product is defined by

〈A, b〉 = tr(B∗A)

Note that if A = (aij) and B = (bij), then (B∗A)jj =
∑n
i=1 bijaij . Therefore

tr(B∗A) =

n∑
j=1

n∑
i=1

bijaij =

n∑
j=1

n∑
i=1

aijbij = v · w,

where

v = (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann)

w = (b11, b12, . . . , b1n, b21, b22, . . . , b2n, . . . , bn1, bn2, . . . , bnn).

4.1.11 Example. Let V = `2(F ) :=
{

(xn)∞n=1 ∈ FN :
∑∞
i=1 |xi|2 <∞

}
. An inner product on V is given by

〈(xn), (yn)〉 =

∞∑
i=1

xiyi.

4.1.12 Definition. A norm on a vector space V is a map ‖ · ‖ : V → R such that for all v, w ∈ V , α ∈ F

(1) ‖v‖ ≥ 0 and ‖v‖ = 0 ⇐⇒ v = 0

(2) ‖αv‖ = |α| · ‖v‖

(3) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

If V is equipped with a norm, we call it a normed vector space.

4.1.13 Theorem (Cauchy-Schwarz Inequality). Let V be an inner product space, and for x ∈ V , define
‖x‖ =

√
〈x, x〉. Then for all x, y ∈ V , |〈x, y〉| ≤ ‖x‖ · ‖y‖.

Proof. Let x, y ∈ V . If y = 0, the result is trivial. Otherwise, 〈y, y〉 > 0. Then for any α ∈ F ,

0 ≤ ‖x− αy‖2 = 〈x− αy, x− αy〉 = 〈x, x〉 − α〈x, y〉 − α〈y, x〉+ αα〈y, y〉.

In particular, when α = 〈x,y〉
〈y,y〉 ,

0 ≤ 〈x, x〉 − 〈y, x〉
〈y, y〉

〈x, y〉 − 〈x, y〉
〈y, y〉

〈y, x〉+
〈x, y〉
〈y, y〉

· 〈y, x〉
〈y, y〉

〈y, y〉 = 〈x, x〉 − 〈x, y〉〈y, x〉
〈y, y〉

.

It follows that 〈x, x〉〈y, y〉 ≥ 〈x, y〉〈x, y〉, i.e., ‖x‖2‖y‖2 ≥ |〈x, y〉|2. Therefore ‖x‖‖y‖ ≥ |〈x, y〉|.

4.1.14 Proposition. Let V be an inner product space. Then setting ‖x‖ =
√
〈x, x〉 for all x ∈ V defines a

norm on V .

Proof. We will show that this choice of norm satisfies all the necessary properties. Let x, y ∈ V , α ∈ F .

(1) ‖x‖ =
√
〈x, x〉 ≥ 0, with ‖x‖ =

√
〈x, x〉 = 0 ⇐⇒ x = 0.

(2) ‖αx‖ =
√
〈αx, αx〉 =

√
|α|2〈x, x〉 = |α|‖x‖.

(3) This one requires a little more work and the Cauchy-Schwarz inequality:

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈y, x〉

= ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈x, y〉
= ‖x‖2 + ‖y‖2 + 2<(x, y)

14
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≤ ‖x‖2 + ‖y‖2 + 2|〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖

= (‖x‖+ ‖y‖)2 .

so ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

This completes the proof.
June 5

4.1.15 Example. Let v = (−1, i, 2 + i) ∈ C3. Then

‖v‖ =
√

(−1, i, 2 + i) · (−1, i, 2 + i) =
√

1 + (i)(−i) + (2 + i)(2− i) =
√

2 + 5 =
√

7.

4.1.16 Example. Let

v =

[
−1 3− i
4 1

]
∈M2(C).

Using the norm induced by the Frobenius inner product,

‖v‖ =

√
tr

([
−1 4

3 + i −i

]
·
[
−1 3− i
4 1

])
=
√

17 + 11 =
√

28 = 2
√

7.

4.1.17 Example. Let f(x) = ex ∈ C[0, 1]. Then

‖f(x)‖ =

√ˆ 1

0

e2x dx =

√
1

2
(e2 − 1).

4.2 Orthogonality and Orthonormality

4.2.1 Proposition (Parallelogram Law). Let V be an inner product space. Then for all x, y ∈ V ,

‖x+ y‖2 + ‖x− y‖2 = 2 · ‖x‖2 + 2‖y‖2.

Proof. Let x, y ∈ V . Then

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉
= 2〈x, x〉+ 2〈y, y〉
= 2‖x‖2 + 2‖y‖2,

as required.

4.2.2 Remark. We now begin to translate our geometric intuition into the language of norms and inner
products. The previous proposition is a generalization of the parallelogram law in Euclidean geometry,
which states that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the
squares of its sides.

Consider the Cosine Law in classical geometry: c2 = a2 + b2 − 2ab cosC. In R2, this translates to

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖y cos θ =⇒ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ

=⇒ −2〈x, y〉 = 2‖x‖y‖ cos θ

=⇒ cos θ =
〈x, y〉
‖x‖‖y‖

.

(Note that we assume x, y 6= 0; we want a triangle, after all.) Thus x, y are perpendicular if and only if
cos θ = 0, i.e., 〈x, y〉 = 0. This gives us a generalization of the notion of “perpendicular” to abstract inner
product spaces.
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4.2.3 Definition. Let V be an inner product space. We say u, v ∈ V are orthogonal if 〈u, v〉 = 0. We say
a subset S ⊆ V is orthogonal if 〈u, v〉 = 0 for all u, v ∈ S. If S is orthogonal and ‖u‖ = 1 for all u ∈ S, then
we say S is orthonormal.

4.2.4 Example. The standard basis for Fn, σ = {e1, e2, . . . , en}, is orthonormal.

4.2.5 Example. When considered as a subset of C[0, 1], S = {1, x, x2} is not orthogonal. However, when S
is considered as a subset of P2(R) ∼= R3, S is orthonormal.

4.2.6 Remark. Let V be an inner product space. Suppose S = {v1, v2, v3, . . . , } ⊆ V \ {0} is orthogonal.

Then S′ =
{

1
‖v1‖v1,

1
‖v2‖v2,

1
‖v3‖v3, . . . ,

}
is orthonormal.

4.2.7 Example. Let H be the collection of continuous functions from [0, 2π] to C. Then

〈f, g〉 =
1

2π

ˆ 2π

0

f(t)g(t) dt

is an inner product on H. Note that if f(x) ∈ H, then f(x) = u(x) + iv(x), where u, v ∈ C[0, 2π], and´
f(t) dt :=

´
u(t) dt+ i

´
v(t) dt.

Let fn(t) = eint = cos (nt) + i sin (nt), and let S = {fn : n ∈ Z}. Then S is orthonormal.
June 7

4.2.8 Proposition. Let V be an inner product space, and let S = {v1, v2, . . . , vk} ⊆ V be orthogonal such

that vi 6= 0 for all 1 ≤ i ≤ k. If y ∈ Span(S) such that y =
∑k
i=1 civi, where c1, c2, . . . , ck ∈ F , then for all

i ≤ i ≤ k,

ci =
〈y, vi〉
‖vi‖2

.

Proof. Let y =
∑k
i=1 civi ∈ Span(S). Then for each 1 ≤ i ≤ k,

〈y, vi〉 =

〈
k∑
i=1

civi, vi

〉
= ci〈vi, vi〉 = ci‖vi‖2,

and since vi 6= 0, we must have

ci =
〈y, vi〉
‖vi‖2

,

as required.

4.2.9 Remark. In the above proposition, if S is in fact orthonormal, then ci = 〈y, vi〉.

4.2.10 Proposition. Let V be an inner product space, and let S ⊆ V be orthogonal consisting of nonzero
vectors. Then S is linearly independent.

Proof. Let v1, v2, . . . , vk ∈ S. Suppose
∑k
i=1 civi = 0 for some c1, c2, . . . , ck ∈ F . By Proposition 4.2.8,

ci =
〈0, vi〉
‖vi‖2

= 0

for 1 ≤ i ≤ k, so S is linearly independent.

4.2.11 Proposition. Let A ∈Mn(F ). Suppose

A =


r1
r2
...

rn

 ,
where r1, r2, . . . , rn ∈ Fn and {r1, r2, . . . , rn} is orthogonal. Then AA∗ is diagonal. If {r1, r2, . . . , rn} is
orthonormal, then AA∗ = I.

16
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Proof. Let AA∗ = (aij). Since

AA∗ =


r1
r2
...

rn,

 · [ r1 r2 · · · rn
]
,

we see that

aij = 〈ri, rj〉 =

{
0 i 6= j

‖ri‖2 i = j
,

so AA∗ is diagonal. In particular, if {r1, r2, . . . , rn} is orthogonal, ‖ri‖2 = 1, so AA∗ = I.

4.2.12 Algorithm (Gram-Schmidt Procedure). Let V be an inner product space. Let {w1, w2, . . . , wn} ⊆ V
be linearly independent. We wish to produce an orthogonal set {v1, v2, . . . , vn} ⊆ V such that

Span{w1, w2, . . . , wn} = Span{v1, v2, . . . , vn}.

We present a procedure for n = 3; it is easy to see how it could be adapted for larger numbers.

(1) Take vi = wi.

(2) Note: Span{w1, w2} = Span{v1, w2} = Span{v1, w2 − αv1} for any α ∈ F . Solve for α so that

0 = 〈w2 − αv1, v1〉 ⇐⇒ 0 = 〈w2, v1〉 − α〈v1, v1〉 ⇐⇒ α =
〈w2, v1〉
‖v1‖2

.

(3) Take v2 = w2 − αv1 = w2 − 〈w2,v1〉
‖v1‖2 v1.

(4) Note: Span{w1, w2, w3} = Span{v1, v2, w3} = Span{v2, v2, w3 − αv1 − βv2}. Solve for α and β:

α =
〈w3, v1〉
‖v1‖2

, β =
〈w3, v2〉
‖v2‖2

.

(5) Take v3 = w3 − αv1 − βv2 = w3 − 〈w3,v1〉
‖v1‖2 −

〈w3,v2〉
‖v2‖2 .

(6) Then {v1, v2, v3} is orthogonal with Span{w1, w2, w3} = Span{v1, v2, v3}, and
{

1
‖v1‖v1,

1
‖v2‖v2,

1
‖v3‖v3

}
is orthonormal.

4.2.13 Theorem (Gram-Schmidt). Let V be an inner product space. If S = {w1, w2, . . . , wn} ⊆ V is
linearly independent, then S1 = {v1, v2, . . . , vn} defined recursively by

vk =

{
w1 k = 1

wk −
∑k−1
j=1

〈wk,vj〉
‖vj‖2 vj otherwise

is an orthogonal set of nonzero vectors such that Span(S) = Span(S1).

Proof. Apply the Gram-Schmidt procedure.

4.2.14 Corollary. If V is a finite-dimensional inner product space, then V has an orthonormal basis.

4.2.15 Example. Let W = Span{w1 = [1, 1, 0], w2 = [0, 2, 1]} ⊆ R3. Take v1 = w1 = [1, 1, 0] and

v2 = w2 −
〈w2, v1〉
‖v1‖2

v1 =

0
2
1

− 2

2

1
1
0

 =

−1
1
1


Thus

{
1√
2
v1,

1√
3
v2

}
is an orthonormal basis for W .

17
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4.2.16 Remark. Suppose {v1, v2, . . . , vn} ⊆ V is orthogonal. Then June 10

‖v1 + v2 + · · ·+ vn‖2 = 〈v1 + v2 + · · ·+ vn, v1 + v2 + · · ·+ vn〉 = ‖v1‖2 + ‖v2‖2 + · · ·+ ‖vn‖2.

4.2.17 Remark. Recall from high school linear algebra that in R2, the projection of ~v onto ~w is given by

proj~v ~w =
~w · ~v
~v · ~v

~v.

Geometrically, this explains the choice of α in the Gram-Schmidt procedure: setting α = ~w·~v
~v·~v ensures that

~w − α~v is perpendicular to ~v.

4.2.18 Exercise. Find an orthogonal basis for P2(R) ⊆ C[0, 1].

Solution. Let β = {w1 = 1, w2 = x,w3 = x2} be the standard basis for P2(R). Take v1 = w1 = 1. Then let

v2 = w2 −
〈w2, v1〉
‖v1‖2

v1 = x−
´ 1
0
x · 1 dx´ 1

0
1 · 1 dx

· 1 = x− 1

2
.

Also, let

v3 = w3 −
〈w3, v2〉
‖v2‖2

v2 −
〈w3, v1〉
‖v1‖2

v1 = x2 −
´ 1
0
x3 − 1

2x
2 dx´ 1

0

(
x− 1

2

)2
dx

(
x− 1

2

)
−
´ 1
0
x2 dx´ 1

0
1 dx

· 1 = x2 − x+
1

6
.

This gives us the orthonormal basis
{

1, x− 1
2 , x

2 − x+ 1
6

}
.

4.2.19 Exercise. A throwback to high school linear algebra: Find the closest point on x = (1, 2) + (1,−1)t
to the point (3, 3).

Solution. Letting ~v = (1,−1) and ~w = (3, 3) − (1, 2) = (2, 1), we have proj~v ~w = 1
2 (1,−1) =

(
1
2 ,−

1
2

)
. This

gives the closest point as (1, 2) +
(
1
2 ,−

1
2

)
=
(
3
2 ,

3
2

)
.

4.2.20 Remark. We want to generalize the notion of projection to abstract subspaces, not just lines.

4.2.21 Definition. Let A,B be subspaces of a vector space V . We say that V is a direct sum of A and B
and write V = A⊕B if

(1) A+B := {a+ b : a ∈ A, b ∈ B} = V and

(2) A ∩B = {0}.

4.2.22 Proposition. Suppose V = A⊕B for some A,B ≤ V .

(1) Every v ∈ V can be uniquely written as v = a+ b, where a ∈ A, b ∈ B.

(2) If α is a basis for A and β is a basis for B, then α ∪ β is a basis for V . In particular, if V is
finite-dimensional, then dimV = dimA+ dimB.

Proof.

(1) Let v ∈ V . Since V = A ⊕ B, there exist a ∈ A, b ∈ B such that v = a + b; we just need to show
uniqueness. Suppose v is also equal to ã + b̃, where ã ∈ A and b̃ ∈ B. Then a + b = ã + b̃, so
A 3 a− ã = b̃− b ∈ B. Since A ∩B = {0}, a− ã = b̃− b = 0, i.e., a = ã and b = b̃.

(2) Let α = {v1, v2, v3, . . . , } and β = {w1, w2, w3, . . . , } be bases for A andB respectively. Since V = A+B,
α ∪ β spans V . Now, suppose

∑n
i=1 civi +

∑n
i=1 diwi = 0 for some c1, c2, . . . , cn, d1, d2, . . . , dn ∈ F .

Then

A 3
n∑
i=1

civi = −
m∑
i=1

divi ∈ B,

and since α and β are each linearly independent, we must have

c1 = c2 = · · · = cn = 0 = d1 = d2 = · · · = dm.

Therefore α ∪ β is linearly independent.
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This completes the proof.

4.2.23 Definition. Let V be an inner product space, and let ∅ 6= S ⊆ V . The orthogonal complement of
S is defined to be

S⊥ := {x ∈ V : 〈v, x〉 = 0 for all v ∈ S}.

4.2.24 Remark. For any ∅ 6= S ⊆ V , S⊥ is a subspace of V .

4.2.25 Theorem. If W is a finite-dimensional subspace of an inner product space V , then V = W ⊕W⊥.
June 12

Proof. Let V be an inner product space and let W ≤ V be finite-dimensional. Let β = {v1, v2, . . . , vk} be

an orthonormal basis for W . Let u =
∑k
i=1〈v, vi〉vi ∈W . Let z = v − u. Now, for every 1 ≤ j ≤ k,

〈z, vj〉 = 〈v − u, vj〉 = 〈v, vj〉 − 〈u, vj〉 = 〈v, vj〉 − 〈v, vj〉〈vj , vj〉 = 〈v, vj〉 − 〈v, vj〉 = 0.

It follows that z ∈ W⊥. Since v = u + z and u ∈ W , v = u + z. Therefore V = W + W⊥. Now, if
x ∈W ∩W⊥, then 〈x, x〉 = 0, so x = 0. Therefore W ⊕W⊥ = 0, and it follows that V = W ⊕W⊥.

4.2.26 Definition. Let V be an inner product space and W ≤ V be finite-dimensional. Let {v1, v2, . . . , vk}
be an orthonormal basis for W . For v ∈ V , we call

u =

k∑
i=1

〈v, vi〉vi ∈W

the orthogonal projection of v onto W , and we write u = projW (v). Note that this vector is unique.

4.2.27 Theorem. Let W be a finite-dimensional subspace of an inner product space V . Let v ∈ V , so that
there exist unique u ∈ W and z ∈ W⊥ such that v = u + z. Then for any x ∈ W , ‖v − x‖ ≥ ‖v − u‖, with
equality if and only if x = u.

Proof. Let x ∈W . Note that u− x ∈W and z ∈W⊥, so

‖v − x‖2 = ‖u+ z − x‖2 = ‖u− x+ z‖2 = 〈u− x+ z, u− x+ z〉 = ‖u− x‖2 + ‖z‖2 ≥ ‖z‖2,

so ‖v − x‖ ≥ ‖z‖ = ‖v − u‖. Equality holds if and only if ‖u− x‖2 = 0, i.e., x = u, so we’re done.

4.2.28 Example. Let W = Span{(i, 0, 1 + i), (0,−i, 1)} ⊆ C3. Note that dimW = 2, so dimW⊥ = 1. By
inspection, we see that (1− i, 1,−i) ∈W⊥, so W⊥ = Span{(1− i, 1,−i)}.

4.2.29 Exercise. Let V = C[0, 1] and let W = P1(R). Find the closest vector in W to f(x) = ex ∈ V .

Solution. By Theorem 4.2.27, we must find projW (f(x)). First, a basis for W is clearly {1, x}. Upon
applying the Gram-Schmidt procedure to this basis, we see that

{
1,
√

12
(
x− 1

2

)}
is an orthonormal basis

for W . Therefore,

projW (f(x)) = 〈ex, 1〉+

〈
ex,
√

12

(
x− 1

2

)〉(√
12

(
x− 1

2

))
=

ˆ 1

0

ex dx+

(ˆ 1

0

ex
(√

12x−
√

3
)
dx

)(√
12x−

√
3
)

= e− 1 +
(
e(
√

12−
√

3) +
√

3−
√

12(e− 1)
)(√

12x−
√

3
)

= e− 1 + (3− e)
√

3
(√

12x−
√

3
)

= e− 1 + (3− e)(6x− 3)

= (18− 6e)x+ (4e− 10).
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4.2.30 Exercise. Find the closest symmetric matrix to June 14

A =

[
a b
c d

]
∈M2(R).

Solution. Let W = {X ∈M2(R) : X = XT }. Note that a basis for W is given by

γ =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

Furthermore, by considering the Frobenius inner product we see that this is actually any orthogonal basis.
If we use

β =

{[
1 0
0 0

]
,

1√
2

[
0 1
1 0

]
,

[
0 0
0 1

]}
,

then we have an orthonormal basis. Say β = {v1, v2, v3}. Then the closest symmetric matrix to A is

projW (A)

= 〈A, v1〉v1 + 〈A, v2〉v2 + 〈A, v3〉v3

= tr

([
1 0
0 0

] [
a b
c d

])[
1 0
0 0

]
+ tr

(
1√
2

[
0 1
1 0

] [
a b
c d

])
1√
2

[
0 1
1 0

]
+ tr

([
0 0
0 1

] [
a b
c d

])[
0 0
0 1

]
=

[
a 0
0 0

]
+

1

2

[
0 b+ c

b+ c 0

]
+

[
0 0
0 d

]
=

[
a 1

2 (b+ c)
1
2 (b+ c) d

]
,

which is what we might expect intuitively.

4.3 The Adjoint

4.3.1 Definition. Let V be a vector space over a field F . We say that T : V → F is a linear functional if
T is linear. The dual space V ∗ of V is the vector space of linear functionals on V .

4.3.2 Theorem (Riesz Representation Theorem). Let V be a finite-dimensional inner product space. Let
T : V → F be a linear functional. Then there exists a unique y ∈ V such that T (x) = 〈x, y〉 for all x ∈ V .

Proof. Assignment 5.

4.3.3 Proposition. Let V be a finite-dimensional inner product space. Let T : V → V be linear. Then there
exists a unique linear operator T ∗ : V → V such that 〈T (x), y〉 = 〈x, T ∗(y)〉 for all x, y ∈ V .

Proof. For arbitrary y ∈ V , Uy : V → F given by Uy(x) = 〈T (x), y〉 is a linear functional. By the Riesz
Representation Theorem, there exists a unique y′ ∈ V such that Uy(x) = 〈x, y′〉 for all x ∈ V . Define
T ∗ : V → V by T ∗(y) = y′.

It remains to show that T ∗ is linear. Let x, y1, y2 ∈ V , α ∈ F . Then

〈x, T ∗(αy1 + y2)〉 = 〈T (x), αy1 + y2〉
= α〈T (x), y1〉+ 〈T (x), y2〉
= α〈x, T ∗(y1)〉+ 〈x, T ∗(y2)〉
= 〈x, αT ∗(y1)〉+ 〈x, T ∗(y2)〉
= 〈x, αT ∗(y1) + T ∗(y2)〉.

Since x was arbitrary, T ∗(αy1 + y2) = αT ∗(y1) + T ∗(y2), and thus T ∗ is linear, so we’re done.

4.3.4 Definition. We call the function T ∗ constructed as in the proof of Proposition 4.3.3 the adjoint of T .
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4.3.5 Proposition. Let V be a finite-dimsional inner product space. Let β be an orthonormal basis for V ,
and let T : V → V be linear. Then [T ∗]β = [T ]∗β.

Proof. Let β = {v1, v2, . . . , vn}. Let A = (aij) = [T ]β . Let B = (bij) = [T ∗]β . Then by Proposition 4.2.8,

bij = 〈T ∗(vj), vi〉 = 〈vi, T ∗(vj)〉 = 〈T (vi), vj〉 = aji,

so A∗ = B, as required.

4.3.6 Remark. Let V be a finite-dimensional inner product space. Let T : V → V be linear. Then for all
x, y ∈ V , 〈T ∗(x), y〉 = 〈x, T (y)〉.

June 17
4.3.7 Remark. Let A ∈Mn(F ) and let σ be the standard (orthonormal) basis for Fn. Then A = [LA]σ, so

A∗ = [LA]∗σ = [L∗A]σ = [LA∗ ]σ,

and thus 〈Ax, y〉 = 〈x,A∗y〉.

4.1 Example. Let T : P2(R)→ P2(R) be given by T (f(x)) = f ′(x). Take σ{x2, x, 1} to be an orthonormal
basis for P2(R) under the dot product. Then

[T ]σ =

0 0 0
2 0 0
0 1 0

 ,
so

[T ∗]σ = [T ]∗σ =

0 2 0
0 0 1
0 0 0

 .
Hence T ∗(x2) = 0, T ∗(x) = 2x2, and T ∗(1) = x, so T ∗(ax2 + bx+ c) = 2bx2 + c.

4.3.8 Proposition. Let V be a finite-dimensional inner product space. Let T,U : V → V be linear, and let
α ∈ F . Then

(1) (T + U)∗ = T ∗ + U∗

(2) (αT )∗ = αT ∗

(3) (T ◦ U)∗ = U∗ ◦ T ∗

(4) (T ∗)∗ = T

(5) I∗ = I.

Proof. Let x, y ∈ V . Then

(1) 〈(T + U)(x), y〉 = 〈T (x), y〉+ 〈U(x), y〉 = 〈x, T ∗(y)〉+ 〈x, U∗(y)〉 = 〈x, (T ∗ + U∗)(y)

(2) 〈(αT )(x), y〉 = α〈T (x), y〉 = α〈x, T ∗(y)〉 = 〈x, (αT )(y)〉

(3) 〈(T ◦ U)(x), y〉 = 〈U(x), T ∗(y)〉 = 〈x, (U∗ ◦ T ∗)(y)〉

(4) 〈(T ∗)(x), y〉 = 〈y, (T ∗)(x)〉 = 〈T (y), x〉 = 〈x, T (y)〉

(5) 〈I(x), y〉 = 〈x, y〉 = 〈x, I(y)〉,

and in each case the result follows by uniqueness of the adjoint.

21



MATH 245 Notes Spencer Wilson

4.4 Least Squares Approximation

4.4.1 Definition. Suppose we have real data points y1, y2, . . . , ym observed at times t1, t2, . . . , tm, and we
plot each (ti, yi) in R2. Our goal is to find a line that best fits this data; i.e., to find the line so that the
(vertical) distances between the points and said line is minimal. In fact, we will seek to minimize the squares
of these vertical distances. Hence this line of best fit will also be called the least squares line.

4.2 Remark. We wish to find the line y = cx + d that minimizes the error term minimize the error term
E =

∑n
i=1(cti + d− yi)2. Accordingly, we set

A =


t1 1
t2 1
...

...
tm 1

 x =

[
c
d

]
y =


y1
y2
...
ym


so that E = ‖Ax− y‖2. Thus we must find x0 so that ‖Ax0 − y‖ is minimal.

4.4.2 Remark. We extend the definition of the adjoint to include any A ∈ Mm×n(F ) by defining A∗ to be
the conjugate transpose of A, as in the n× n case.

4.4.3 Lemma. Let A ∈Mm×n(F ), x ∈ Fn, and y ∈ Fm. Then 〈Ax, y〉 = 〈x,A∗y〉.

Proof. Note that 〈Ax, y〉 = y∗Ax = (A∗y)∗x = 〈x,A∗y〉.

4.4.4 Lemma. Let A ∈Mm×n(F ). Then rank(A) = rank(A∗A). In particular, if rankA = n, then A∗A is
invertible.

Proof. We will show a stronger result, namely that Null(A) = Null(A∗A). Clearly Null(A) ⊆ Null(A∗A).
Let x ∈ Null(A∗A). Then

‖Ax‖2 = 〈Ax,Ax〉 = 〈x,A∗Ax〉 = 〈x, 0〉 = 0,

so Ax = 0, and thus Null(A∗A) ⊆ Null(A). A fortiori, this completes the proof.

4.3 Remark. Recall that we want to minimize ‖Ax − y‖, where A ∈ Mm×n(F ), x ∈ Fn, y ∈ Fm. Let
W = Range(A). Let y0 = projW (y) ∈W . Say y0 = Ax0 for some x0 ∈ Fn. Then ‖Ax0 − y‖ is minimal. June 19

Now,

y − y0 ∈W⊥ =⇒ y −Ax0 ∈W⊥

=⇒ 〈Ax, y −Ax0〉 = 0 ∀x ∈ Fn

=⇒ 〈x,A∗(y −Ax0)〉 = 0 ∀x ∈ Fn

=⇒ A∗(y −Ax0) = 0

=⇒ A∗y = A∗Ax0.

If rankA = n (which it always is for our real world applications), x0 = (A∗A)−1A∗y.

4.4 Example. In the last four Spring terms at Waterloo, the MATH 245 final exam averages have been
75, 82, 60, and 70.1 To find the line of best fit for this data, we plot the points (1, 75), (2, 82), (3, 60), and
(4, 70) and use the matrices

A =


1 1
2 1
3 1
4 1

 y =


75
82
60
70

 .
This gives us

A∗ =

[
1 2 3 4
1 1 1 1

]
A∗A =

[
30 10
10 4

]
(A∗A)−1 =

1

20

[
4 −10
−10 30

]
=

[
1/5 −1/2
−1/2 3/2

]
.

1Data fabricated for the purpose of this example.

22



MATH 245 Notes Spencer Wilson

Therefore

x0 = (A∗A)−1A∗y =

[
1/5 −1/2
−1/2 3/2

] [
1 2 3 4
1 1 1 1

]
75
82
60
70

 =

[
1/5 −1/2
−1/2 3/2

] [
699
287

]
=

[
−3.7
81

]
,

which gives us the line of best fit y = −3.7x+ 81.

4.5 Remark. We similarly can find the polynomial of best fit, y = anx
n + an−1x

n−1 + a1x+ a0, by using the
matrices

A =


tn1 tn−11 · · · t1 1
tn2 tn−12 · · · t2 1
...

... · · ·
...

tnm tn−1m · · · tm 1

 x =


an
an−1
...
a0

 y =


y1
y2
...
ym

 .

4.5 Normal, Hermitian, and Unitary Operators

4.5.1 Remark. Note that for A ∈ Mn(F ), if the columns of A form an orthonormal basis for Fn, then
A∗A = I, and thus A−1 = A∗.

4.5.2 Lemma. Let V be a finite-dimensional inner product space. Let T : V → V be linear. If T has an
eigenvector, then T ∗ has an eigenvector.

Proof. Suppose there exists 0 6= v ∈ V such that T (v) = λv for some λ ∈ F . Then

(T − λI)(v) = 0 =⇒ 〈(T − λI)(v), x〉 = 0 ∀x ∈ V
=⇒ 〈v, (T − λI)∗(x)〉 = 0 ∀x ∈ V
=⇒ 〈v, (T ∗ − λI)(x)〉 = 0 ∀x ∈ V.

Hence 0 6= v ∈ Range(T ∗ − λI)⊥, so Range(T ∗ − λI) 6= V . In particular, Null(T ∗ − λI) 6= {0}, so T ∗ has a
λ eigenvector.

4.5.3 Theorem (Schur). Let V be a finite-dimensional inner product space. Let T : V → V be linear such
that the characteristic polynomial of T splits over F . Then there exists an orthonormal basis for V such that
[T ]β is upper triangular.
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Proof. By induction on n = dimV . If n = 1, we’re clearly done. Inductively, assume the result for all inner
product spaces with dimension less than n. Suppose dimV = n. Since the characteristic polynomial of T
splits, T must have an eigenvector. By Lemma 4.5.2, so does T ∗. Let an eigenvector for T ∗ be 0 6= v; then
T ∗(v) = λv for some λ ∈ F . Without loss of generality, we may assume that ‖v‖ = 1. Take W = Span v.
Then V = W ⊕W⊥.

We claim that W⊥ is T -invariant. Accordingly, let y ∈ W⊥. Then 〈T (y), v〉 = 〈y, T ∗(v)〉 = 〈y, λv〉 =
λ〈y, v〉 = 0, because y ∈W⊥. Since W = Span v, this shows that T (y) ∈W⊥; hence, W⊥ is T -invariant.

Now, dimW⊥ = n− 1, and the characteristic polynomial of TW splits, since it divides the characteristic
polynomial of T . Therefore there exists an orthonormal basis γ or W⊥ such that [TW⊥ ]γ is upper triangular.
Then β = γ ∪ {v} is an orthonormal basis for V , and

[T ]β =


∗

[TW⊥ ]γ ∗
...

0 · · · 0 ∗

 ,
which is upper triangular. This completes the proof.
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4.5.4 Corollary. 2 Let A ∈ Mn(F ) such that the characteristic polynomial of A splits. Then there exist
U,B ∈Mn(F ) such that U−1 = U∗, B is upper triangular, and A = UBU∗.

Proof. By Schur’s theorem, choose an ordered basis β such that [LA]β is upper triangular, and set B = [LA]β .
Then take U = [I]σβ . The columns of U are orthonormal, so [I]βσ = U−1 = U∗. Then

A = [LA]σ = [I]σβ [LA]β [I]βσ = UBU∗,

as required.

4.5.5 Definition. Let V be a finite-dimensional inner product space. Let T : V → V be linear. We say
that T is normal if TT ∗ = T ∗T . Similarly, we say that A ∈Mn(F ) is normal if AA∗ = A∗A.

4.5.6 Proposition. Let V be a finite-dimensional inner product space. Let T : V → V be normal.

(1) For all x ∈ V , ‖T (x)‖ = ‖T ∗(x)‖.

(2) Every λ-eigenvector of T is a λ-eigenvector of T ∗.

(3) If x is a λ-eigenvector of T and y is a µ-eigenvector of T , where λ 6= µ, then x and y are orthogonal.

Proof.

(1) ‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, T ∗T (x)〉 = 〈x, TT ∗(x)〉 = 〈T ∗ (x), T ∗(x)〉 = ‖T ∗(x)‖2.

(2) Suppose T (v) = λv for some 0 6= v ∈ V and λ ∈ F . consider U = T − λI. Then UU∗ = U∗U , so
‖U∗(v)‖ = ‖U(v)‖ = 0, which means that U∗(v) = 0. Therefore T ∗(v) = λv.

(3) Suppose T (x) = λx and T (y) = µy for some 0 6= x, y ∈ V , λ, µ ∈ F with λ 6= µ. Then

λ〈x, y〉 = 〈T (x), y〉 = 〈x, T ∗(y)〉 = 〈x, µy〉 = µ〈x, y〉.

Since λ 6= µ, we must have 〈x, y〉 = 0, so x and y are orthogonal.

This completes the proof.

4.5.7 Theorem. Let V be a finite-dimensional inner product space over C. Let T : V → V be linear. Then
T is normal if and only if there exists an orthonormal basis β for V composed of eigenvectors of T .
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Proof. (⇒) Assume T is normal. By Schur’s Theorem, there exists an orthonormal basis β = {v1, v2, . . . , vn}
such that [T ]β is upper triangular. Say A = [T ]β = (aij). Now T (v1) = a11v1, so v1 is an eigenvector
of T . Inductvely, suppose v1, v2, . . . , vk−1 are eigenvectors of T for some k ≥ 2. Say T (vi) = λibk for
i ∈ {1, 2, . . . , k − 1}. We claim that vi is an eigenvector of T .

Note that since A is upper triangular,

[T (vk)]β = [T ]β [vk]β = A[vk]β = (a1k, a2k, . . . , akk, 0, . . . , 0),

and therefore T (vk) = a1kv1 + a2kv2 + · · ·+ akkvk. By Proposition 4.2.8,

aik = 〈T (vk), vi〉 = 〈vk, T ∗(vi)〉 = 〈vk, λivi〉 = λ〈vk, vi〉 = 0

for 1 ≤ i ≤ k, so in fact T (vk) = akkvk. By induction, β is an orthonormal basis for V composed of
eigenvectors of T .

(⇐) Assume there exists an orthonormal basis β for V composed of eigenvectors of T . Then [T ]β is
diagonal. Since β is orthonormal, [T ∗]β = [T ]∗β , which must be diagonal. Therefore

[TT ∗]β = [T ]β [T ∗]β = [T ∗]β [T ]β = [T ∗T ]β .

Hence T ∗T = TT∗, so T is normal. This completes the proof.

2Corollary 4.5.4 was presented on June 17, before the proof of Schur’s Theorem.
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4.5.8 Corollary. 3 Let A ∈ Mn(C). Then A is normal if and only if there exists U,D ∈ Mn(C) such that
U−1 = U∗, D is diagonal, and A = UDU∗.

4.5.9 Example. A word of warning:

A =

[
0 1
−1 0

]
∈M2(R)

satisfies AA∗ = A∗A = I, but its characteristic polynomial is x2 + 1, so it is not diagonalizable.

4.5.10 Definition. Let T be a linear operator on a finite-dimensional inner product space V . We say that
T is Hermitian if T = T ∗. Similarly, we say that A ∈Mn(F ) is Hermitian if A = A∗.

4.5.11 Proposition. Let V be a finite-dimensional inner product space. Let T : V → V be a Hermitian
operator. Then

(1) every eigenvalue of T is real;

(2) the characteristic polynomial of T splits over F .

Proof.

(1) Since T is Hermitian, T is normal. Let λ ∈ F be an eigenvalue of T with eigenvector 0 6= x. Then
λx = T (x) = T ∗(x) = λx. Since x 6= 0, λ = λ, so λ ∈ R.

(2) We know that the characteristic polynomial of T must split over C. Since every eigenvalue of T is real,
the characteristic polynomial of T has no complex roots, so it must also split over R.

This completes the proof.

4.5.12 Theorem. Let V be a finite-dimensional inner product space over R. Let T : V → V be linear. Then
T is Hermitian if and only if there exists an orthonormal basis β for V composed of eigenvectors of T .

Proof. (⇒) Assume T is Hermitian. By Proposition 4.5.11, its characteristic polynomial splits over R. By
Schur’s Theorem, there exists an orthonormal basis β such that [T ]β is upper triangular. Furthermore
[T ]∗β = [T ∗]β = [T ]β , so [T ]β is symmetric and hence diagonal.

(⇐) Assume there exists an orthonormal basis β for V composed of eigenvectors of T . Then [T ∗]β = [T ]∗β .
Since [T ]β is diagonal, [T ]∗β = [T ]β , so in fact [T ∗]β = [T ]β . Therefore T = T ∗, so we’re done.

4.5.13 Corollary. Let A ∈Mn(R). Then A is Hermitian if and only if there exist U,D ∈Mn(R) such that
UT = U−1, D is diagonal, and A = UDUT .
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4.5.14 Example. The matrix

A =

[
i i
i 1

]
∈M2(C)

is symmetric but not normal, since

A∗A =

[
−i −i
−i 1

] [
i i
i 1

]
=

[
2 1− i

1 + i 2

]
6=
[

2 1 + i
1− i 2

]
=

[
i i
i 1

] [
−i −i
−i 1

]
= AA∗.

4.5.15 Definition. Let V be a finite-dimensional inner product space. Let T : V → V be linear. If
T−1 = T ∗, then we say T is

(1) orthogonal if F = R

(2) unitary if F = C.

Similarly, we say that A ∈Mn(R) (Mn(C)) is orthogonal (unitary) if A−1 = A∗.

4.5.16 Remark. A ∈Mn(F ) is unitary/orthogonal if and only if LA is unitary/orthogonal.

3Corollary 4.5.8 and Example 4.5.9 were presented on June 19, before the proof of Theorem 4.5.7.
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4.5.17 Proposition. Let V be a finite-dimensional inner product space. Let T : V → V be linear. The
following are equivalent:

(1) T is unitary/orthogonal.

(2) 〈T (x), T (y)〉 = 〈x, y〉 for all x, y ∈ V .

(3) If β is an orthonormal basis for V , then T (β) is an orthonormal basis for V .

(4) There exists an orthonormal basis β for V such that T (β) is an orthonormal basis for V .

(5) For all x ∈ V , ‖T (x)‖ = ‖x‖.

Proof. (1) ⇒ (2) Assume (1). Then for all x, y ∈ V ,

〈T (x), T (y)〉 = 〈x, T ∗T (y)〉 = 〈x, T−1T (y)〉 = 〈x, y〉.

(2) ⇒ (3) Assume (2). Let β = {v1, v2, . . . , vn} be an orthonormal basis for V . We first show that T is
injective. Let x ∈ Null(T ). Then 0 = ‖T (x)‖ = 〈T (x), T (x)〉 = 〈x, x〉, so x = 0. Therefore Null(T ) = {0},
so T is injective, and in particular T (β) is a basis for B. Finally, for any 1 ≤ i, j ≤ n with i 6= j,
〈T (vi), T (vj)〉 = 〈vi, vj〉 = 0 and ‖T (vi)‖2 = 〈T (vi), T (vi)〉 = 〈vi, vi〉 = 1, so T (β) is orthonormal.

(3) ⇒ (4) Trivial.
(4) ⇒ (5) Assume (4). Let β be an orthonormal basis for V such that T (β) is an orthonormal basis for

V . Say β = {v1, v2, . . . , vn}. Let x ∈ V . Say x = a1v1 + a2v2 + · · ·+ anvn, where a1, a2, . . . , an ∈ F . Then

‖x‖2 = 〈a1v1+a2v2+· · ·+anvn, a1v1+a2v2+· · ·+anvn〉 = a1a1+a2a2+· · ·+anan = ‖a1‖2+‖a2‖2+· · ·+‖an‖2

and similarly

‖T (x)‖2 = 〈a1T (v1)+a2T (v2)+· · ·+anT (vn), a1T (v1)+a2T (v2)+· · ·+anT (vn)〉 = ‖a1‖2+‖a2‖2+· · ·+‖an‖2,

so ‖x‖ = ‖T (x)‖.
(5)⇒ (1) Assume ‖T (x)‖ = ‖x‖ for all x ∈ V . Then for all x ∈ V , 〈T (x), T (x)〉 = 〈x, x〉, so 〈x, T ∗T (x)〉 =

〈x, x〉, which implies that 〈x, (T ∗T − I)(x)〉 = 0. Setting U = T ∗T − I, we note that U = U∗. Therefore
there exists an orthonormal basis for V composed of eigenvectors of U . Accordingly, let 0 6= v ∈ V such that
U(v) = λv for some λ ∈ F . Then 0 = 〈v, U(v)〉 = 〈v, λv〉 = λ〈v, v〉, and since v 6= 0 we must have λ = 0.
Therefore all the eigenvalues of U are 0, and since U is diagonalizable, U = 0. Therefore T ∗T = I.

This completes the proof.

4.5.18 Definition. Let A,B ∈ Mn(F ). We say that A and B are orthogonally/unitarily equivalent if
there exists an orthogonal/unitary matrix U such that A = UBU∗. If B is diagonal, we say that A is
orthogonally/unitarily diagonalizable.

4.5.19 Corollary. Let V be a finite-dimensional inner product space. Let T : V → V be orthogonal/unitary.
Then every eigenvalue of T has absolute value 1.

Proof. If T (x) = λx for some 0 6= x ∈ V , λ ∈ F , then |λ|‖x‖ = ‖λx‖ = ‖T (x)‖ = ‖x‖, so |λ| = 1.
June 28

4.5.20 Corollary. Let V be a finite-dimensional inner product space over R. Let T : V → V be linear.
Then T is orthogonal and Hermitian if and only if there exists an orthonormal basis for V composed of ±1
eigenvectors of T .

4.5.21 Corollary. Let V be a finite-dimensional inner product space over C. Let T : V → V be linear. Then
T is unitary if and only if there exists an orthonormal basis for V composed of eigenvectors of T where each
eigenvector corresponds to an eigenvalue of modulus 1.
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4.5.22 Example. Let

A =

[
0 −1
1 0

]
.

Then A is normal, but not Hermitian, so A is unitarily diagonalizable but not orthogonally diagonalizable.
The characteristic polynomial of A is f(x) = x2 + 1 = (x+ i)(x− i).

We see by inspection that (i, 1) and (1, i) are eigenvectors for A corresponding to eigenvalues λ1 = i
and λ2 = −i respectively. Therefore Eλ1 = Span{(i, 1)} and Eλ2 = Span{(1, i)}. Since A is normal, these

eigenvectors must be orthogonal, so β =
(

1√
2
(i, 1), 1√

2
(1, i)

)
is an orthonormal basis for C2. Therefore

A = UDU∗, where

U =

[
i/
√

2 1/
√

2

1/
√

2 i/
√

2

]
D =

[
i 0
0 −i

]
.

4.5.23 Example. Let

A =

0 2 2
2 0 2
2 2 0

 .
Note that A is symmetric and thus orthogonally diagonalizable. The characteristic polynomial of A is

f(x) =

∣∣∣∣∣∣
−x 2 x
2 −x 2
2 2 −x

∣∣∣∣∣∣
= −x

∣∣∣∣−x 2
2 −x

∣∣∣∣− 2

∣∣∣∣2 2
2 −x

∣∣∣∣+ 2

∣∣∣∣ 2 2
−x 2

∣∣∣∣
= −x(x2 − 4)− 2(−2x− 4) + 2(4 + 2x)

= −x3 + 4x+ 4x+ 8 + 8 + 4x

= −x3 + 12x+ 16

= (x− 4)(−x2 − 4x− 4)

= −(x− 4)(x+ 2)2.

Setting λ1 = 4, we note that (1, 1, 1) is a λ1 eigenvector, so Eλ1 = Span{(1, 1, 1)}. Setting λ2 = −2, we
see that (1,−1, 0) and (−1, 0, 1) are λ2 eigenvectors, so Eλ2

= Span{(1,−1, 0), (−1, 0, 1)}. Applying the

Gram-Schmidt procedure produces orthonormal bases
{

1√
3
(1, 1, 1)

}
and

{
1√
2
(1,−1, 0), 1√

6
(−1,−1, 2)

}
for

Eλ1 and Eλ2 respectively. Since A is normal, an orthonormal basis for V is given by{
1√
3

(1, 1, 1),
1√
2

(1,−1, 0),
1√
6

(−1,−1, 2)

}
. Therefore A = UDUT , where

U =

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 −1
√

2 −1
√

6

1/
√

3 0 2/
√

6

 D =

4 0 0
0 −2 0
0 0 −2

 .
4.6 Rigid Motions

4.6.1 Definition. Let V be a finite-dimensional inner product space over R. We say that f : V → V is a
rigid motion if ‖f(x)− f(y)‖ = ‖x− y‖ for all x, y ∈ V .

4.6.2 Example. In R2, rotation, translation, and reflection are all rigid motions. As we will show, these
are the only rigid motions in R2.
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4.6.3 Definition. Let V be a vector space. A translation is a function f : V → V given by f(x) = x + v
for some fixed v ∈ V .

4.6.4 Proposition. Let V be a finite-dimensional inner product space over R. Let f : V → V be a rigid
motion. Then there exists a unique orthogonal operator T : V → V and a unique translation g : V → V such
that f = g ◦ T .

Proof. Define T : V → V by T (x) = f(x) − f(0). We claim that T is linear and orthogonal. First note the
following:

(1) For all x, y ∈ V , ‖T (x)− T (y)‖ = ‖f(x)− f(0)− f(y) + f(0)‖ = ‖f(x)− f(y)‖ = ‖x− y‖.

(2) For all x ∈ V , ‖T (x)‖2 = ‖f(x)− f(0)‖2 = ‖x− 0‖2 = ‖x‖2, so ‖T (x)‖ = ‖x‖.

(3) For x, y ∈ V , ‖T (x)− T (y)‖2 = ‖T (x)‖2 + ‖T (y)‖2 − 2〈T (x), T (y)〉 = ‖x‖2 + ‖y‖2 − 2〈T (x), T (y)〉 and
‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉. By (1), ‖T (x)− T (y)‖ = ‖x− y‖, so 〈x, y〉 = 〈T (x), T (y)〉.

Let x, y ∈ V , α ∈ R. Then

‖T (x+ αy)− T (x)− αT (y)‖2 = ‖T (x+ αy)− T (x)‖2 + ‖αT (y)‖2 − 2〈T (x+ αy)− T (x), αT (y)〉
= ‖x− αy − x‖2 + ‖αy‖2 − 2〈x+ αy − x, αy〉
= 2α2‖y‖2 − 2α2〈y, y〉
= 0,

so T (x+ αy) = T (x) + αT (y). Therefore T is linear. By (2), T is orthogonal.
It remains to show uniqueness. Suppose T and U are orthogonal and a, b ∈ V such that f(x) = T (x)+a =

U(x) + b. Then f(a) = T (0) = a = U(0) = b, so a = b, and therefore U = T . This completes the proof.

4.6.5 Example. Consider Tθ : R2 → R2 corresponding to counter-clockwise rotation by θ. Then for all
x ∈ R2, ‖Tθ(x)‖ = ‖x‖, so Tθ is orthogonal. Moreover, Tθ(e1) = (cos θ, sin θ) and Tθ(e2) = (− sin θ, cos θ).
Therefore

[Tθ]σ =

[
cos θ − sin θ
sin θ cos θ

]
.

4.6.6 Example. Consider T : R2 → R2 corresponding to reflection over the line y = mx. Let α be the
(positive) angle between the x-axis and y = mx. Take v1 = (cosα, sinα) and v2 = (− sinα, cosα); note that
‖v1‖ = 1 = ‖v2‖ and v1 · v2 = 0, so β = {v1, v2} is an orthonormal basis for bbR2. Therefore

[T ]β =

[
1 0
0 −1

]
.

This gives us [T ]σ = U [T ]βU
T , where

U =

[
cosα − sinα
sinα cosα

]
.

Therefore

[T ]σ =

[
cosα − sinα
sinα cosα

] [
1 0
0 −1

] [
cosα sinα
− sinα cosα

]
=

[
cosα − sinα
sinα cosα

] [
cosα sinα
sinα − cosα

]
=

[
cos2 α− sin2 α 2 cosα sinα

2 cosα sinα sin2 α− cos2 α

]
=

[
cos (2α) sin (2α)
sin (2α) − cos (2α)

]
.
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4.6.7 Proposition. Let T : R2 → R2 be an orthogonal operator. Then T is a rotation or a reflection over
a line through the origin. In particular, if f : R2 → R2 is a rigid motion, then f is either a rotation or a
reflection followed by a translation.

July 3
Proof. Let σ = {e1, e2} be the standard basis for R2. Since T is orthogonal, T (σ) = {T (e1), T (e2)} is
an orthonormal basis for R2. Then ‖T (e1)‖ = 1, so T (e1) = (cos θ, sin θ) for some θ ∈ [0, 2π). Moreover,
〈T (e1), T (e2)〉 = 0 and ‖T (e2)‖ = 1. It follows that either T (e2) =

(
cos
(
θ + π

2

)
, sin

(
θ + π

2

))
= (− sin θ, cos θ)

or T (e2) =
(
cos
(
θ − π

2

)
, sin

(
θ − π

2

))
= (sin θ,− cos θ). Therefore [T ]σ is one of[

cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
sin θ − cos θ

]
and therefore T is either a rotation or a reflection, as required.

4.7 Spectral Decomposition

4.7.1 Definition. Let V be a finite-dimensional vector space. Let W1,W2 ≤ V such that V = W1 ⊕W2.
Recall that for every v ∈ V there exist unique xv ∈ W1, yv ∈ W2 such that v = xv + yv. The linear map
T : V → V given by T (v) = xv is called the projection on W1 along W2. If W2 = W⊥1 , then T (v) = projW (v),
and we say that T is an orthogonal projection.

4.6 Remark. If T is as in the above definition, Range(T ) = W1 and Null(T ) = W2.

4.7.2 Proposition. Let V be a finite dimensional vector space. Then a linear operator T : V → V is a
projection if and only if T = T 2.

Proof. (⇒) Assume T is a projection. Thus T is the projection on Range(T ) along Null(T ). Let v ∈ V .
Then v = T (x) + z, for some T (x) ∈ Range(T ), z ∈ Null(T ). Then T (v) = T 2(x) + T (z) = T 2(x) = T (x),
so T 2(v) = T 2(x) = T (x) = T (v). Therefore T = T 2.

(⇐) Assume T = T 2. We claim that V = Range(T ) ⊕ Null(T ). Indeed, if x ∈ Range(T ) ∩ Null(T ),
then T (x) = 0 and there is some y ∈ V such that x = T (y). But then 0 = T (x) = T 2(y) = T (y) = x,
so Range(T ) ∩ Null(T ) = {0}. But dim(Range(T ) + Null(T )) = dimV by the Rank-Nullity Theorem, so
V = Range(T ) ⊕ Null(T ). Moveover, if v = T (x) + z, where T (x) ∈ Range(T ) and z ∈ Null(T ), then
T (v) = T 2(x) = T (x), so T is the projection on Range(T ) along Null(T ).

4.7.3 Proposition. Let V be a finite-dimensional inner product space. Let T : V → V be a linear operator.
Then T is an orthogonal projection if and only if T = T 2 = T ∗.

Proof. (⇒) Assume T is an orthogonal projection. By Proposition 4.7.2, we know that T = T 2, so it
suffices to show that T is Hermitian. Let x, y ∈ V . Then x = T (v1) + z1 and y = T (v2) + z2 for some
T (v), T (v2) ∈ Range(T ), z1, z2 ∈ Null(T ). Then

〈T (x), y〉 = 〈T 2(v1), T (v2) + z2〉 = 〈T (v1), T (v2) + z2〉 = 〈T (v1), T (v2)〉+ 〈T (v1), z2〉.

Since T is an orthogonal projection, 〈T (v1), z2〉 = 0. Therefore 〈T (x), y〉 = 〈T (v1), T (v2)〉. Similarly,

〈x, T (y)〉 = 〈T (v1) + z1, T
2(v2)〉 = 〈T (v1) + z1, T (v2)〉 = 〈T (v1), T (v2)〉+ 〈z1, T (v2)〉 = 〈T (v1), T (v1)〉.

Therefore 〈x, T (y)〉 = 〈y, T (x)〉, and since x and y were arbitrary, T = T ∗.
(⇐) Assume T = T 2 = T ∗. By Proposition 4.7.2, we know that T is a projection, so it suffices to show

that T is an orthogonal projection, i.e., that Null(T ) = Range(T )⊥. Accordingly, let T (x) ∈ Range(T ),
y ∈ Null(T ). Then

〈T (x), y〉 = 〈x, T ∗(y)〉 = 〈x, T (y)〉 = 〈x, 0〉 = 0,

so Null(T ) ⊆ Range(T )⊥. But dim Null(T ) = dimV − Range(T ) = Range(T )⊥, so Null(T ) = Range(T )⊥.
Therefore T is an orthogonal projection.
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4.7.4 Definition. For i, j ∈ Z, we define

δij =

{
0 i 6= j

1 i = j
.

4.7.5 Theorem (Spectral Theorem). Let V be a finite-dimensional inner product space. Let T : V → V be
linear. Let the distinct eigenvalues of T be λ1, λ2, . . . , λk. If F = C, assume T is normal; if F = R, assume
T is Hermitian. For 1 ≤ i ≤ k, let Wi = Eλi

and Ti(x) = projWi
(x). Then

(1) V = W1 ⊕W2 ⊕ · · · ⊕Wk

(2) W⊥i = W1 ⊕W2 ⊕ · · · ⊕Wi−1 ⊕Wi+1 ⊕ · · · ⊕Wk =: W ′i

(3) Ti ◦ Tj = δijTi

(4) I = T1 + T2 + · · ·+ Tk

(5) T = λ1T1 + λ2T2 + · · ·+ λkTk.
July 5

Proof. Fix 1 ≤ i, j ≤ k.

(1) Since T is normal/Hermitian, its distinct eigenspaces intersect trivially; therefore W1 ⊕W2 ⊕ · · · ⊕
Wk ≤ V . Also, T is diagonalizable, so dimW1 + dimW2 + · · · + dimWk = dimV . It follows that
V = W1 ⊕W2 ⊕ · · · ⊕Wk.

(2) Let x = x1 + x2 + · · ·+ xi−1 + xi+1 + · · ·+ xk ∈W ′i , y ∈Wi. Then

〈x, y〉 = 〈x1, y〉+ 〈x2, y〉+ · · ·+ 〈xi−1, y〉+ 〈xi+1, y〉+ · · ·+ 〈xk, y〉 = 0 + 0 + · · ·+ 0 + 0 + · · ·+ 0 = 0,

since T is normal. Therefore W ′i ⊆W⊥i , and since dimW ′i = dimV − dimWi = dimW⊥i , W ′i = W⊥i .

(3) First note that Ti ◦ Ti = T 2
i = Ti, since Ti is a projection. If i 6= j, then Ti ◦ Tj = 0, since T is

normal/Hermitian and therefore Eλi
and Eλj

intersect trivially.

(4) Let x = x1 + x2 + · · ·+ xk, where each xi ∈Wi. Then

(T1 + T2 + · · ·+ Tk)(x) = T1(x) + T2(x) + · · ·+ Tk(x) = x1 = x2 + · · ·+ xk,

so T1 + T2 + · · ·+ Tk = I.

(5) Again,let x = x1 + x2 + · · ·+ xk, where each xi ∈Wi. Then

(λ1T1 + λ2T2 + · · ·+ λkTk)(x) = λ1x1 + λ2x2 + · · ·+ λkxk = T (x1) + T (x2) + · · ·+ T (xk) = T (x),

so (λ1T1 + λ2T2 + · · ·+ λkTk) = T .

This completes the proof.

4.7.6 Definition. Let V be a vector space. Let T : V → V be linear. The set of eigenvalues of T is called
the spectrum of T and denoted σ(T ). The expression

T = λ1T1 + λ2T2 + · · ·+ λkTk

as in the spectral theorem is called the spectral decomposition of T .

4.7.7 Remark (Lagrange Interpolation). Let c0, c1, . . . , cn ∈ F be distinct. Define

fi(x) =

∏
j 6=i(x− cj)∏
j 6=i(ci − cj)

,

and note that fi(cj) = δij for all 1 ≤ i, j ≤ n.
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We claim that {f0, f1, . . . , fn} is a basis for Pn(F ). Indeed, if

a0f0 + a1f1 + · · ·+ anfn = 0

for some a0, a1, . . . , an ∈ F , then for every 1 ≤ i ≤ n

0 = (a0f0 + a1f1 + · · ·+ anfn)(ci) = ai,

so {f0, f1, . . . , fn} is linearly independent and hence forms a basis for Pn(F ).

4.7.8 Remark. With V and T as in the Spectral Theorem, T ` = λ`1T1 + λ`2T2 + · · · + λ`kTk for ` ∈ N. It
follows that for f(x) ∈ F [x], f(T ) = f(λ1)T1 + f(λ2)T2 + · · ·+ f(λk)Tk.

4.7.9 Corollary. Let V be a finite-dimensional inner product space over C. Let T : V → V be a linear
opreator. Then T is normal if and only if T ∗ = f(T ) for some f(x) ∈ F [x].

Proof. (⇒) Suppose T is normal. Let T = λ1T1 + λ2T2 + · · · + λkTk be the spectral decomposition of T .
Using Lagrange interpoation, let f(x) ∈ F [x] such that f(λi) = λi for 1 ≤ i ≤ k. Then

T ∗ =

k∑
i=1

λiT
∗
i =

k∑
i=1

λiTi =

k∑
i=1

f(λi)Ti = f(T ),

since each Ti is an orthogonal projection and hence is Hermitian.
(⇐) For any f(x) ∈ F [x], Tf(T ) = f(T )T , so TT ∗ = T ∗T , and we’re done.

4.7.10 Corollary. Let V and T be as in the Spectral Theorem. Then for each 1 ≤ i ≤ k, there exists
gi ∈ F [x] such that gi(T ) = Ti.

Proof. For each 1 ≤ i ≤ k, choose gi ∈ F [x] such that gi(λj) = δij for 1 ≤ j ≤ k.
July 8

4.7.11 Corollary. Let V be a finite-dimensional inner product space over C. Let T : V → V be linear. Then
T is Hermitian if and only if T is normal and σ(T ) ⊆ R.

Proof. (⇒) See part (1) of Proposition 4.5.11.
(⇐) Let λ1T1 + λ2T2 + · · ·+ λkTk be the spectral decomposition of T , where λ1, λ2, . . . , λk ∈ R. Then

T ∗ = λ1T
∗
1 + λ2T

∗
2 + · · ·+ λkT

∗
k = λ1T1 + λ2T2 + · · ·+ λkTk = T,

so T is Hermitian, and we’re done.

4.7.12 Corollary. Let T be a finite-dimensional inner product space over C. Let T : V → V be linear. Then
T is unitary if and only if T is normal and |λ| = 1 for all λ ∈ σ(T ).

Proof. (⇒) See Corollary 4.5.19.
(⇐) Suppose T is normal and |λ| = 1 for all λ ∈ σ(T ). Say the spectral decomposition of T is T =

λ1T1 + λ2T2 + · · ·+ λkTk. Then T ∗ = λ1T1 + λ2T2 + · · ·+ λkTk, so

TT ∗ = λ1λ1T1 + λ2λ2T2 + · · ·+ λkλkTk = T1 + T2 + · · ·+ Tk = I,

so T is unitary, and we’re done.
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4.8 Singular Value Decomposition

4.8.1 Definition. Let T : V → W be linear, where V and W are finite- dimensional inner product spaces
over the same field F . Let T : V → W be linear. A function T ∗ : W → V is called an adjoint of T if
〈T (x), y〉 = 〈x, T ∗(y)〉 for all x ∈ V and y ∈W .

4.8.2 Proposition. Let T : V →W be linear, where V and W are finite- dimensional inner product spaces
over the same field F . Let T : V →W be linear. Then:

(1) T ∗ exists, is unique and is linear.

(2) If β and γ are orthonormal bases for V and W respectively, then [T ∗]βγ = ([T ]γβ)∗.

Proof.

(1) For arbitrary y ∈ W , Uy : V → F defined by Uy(x) = 〈T (x), y〉 is a linear functional. By the Riesz
Representation Theorem, there exists a unique y′ ∈ V such that Uy(x) = 〈x, y′〉 for all x ∈ V . Define
T ∗ : W → V by T ∗ (y) = y′.

It remains to show that T ∗ is linear. Let x ∈ V , y1, y2 ∈W , α ∈ F . Then

〈x, T ∗(αy1 + y2)〉 = 〈T (x), αy1 + y2〉
= α〈T (x), y1〉+ 〈T (x), y2〉
= α〈x, T ∗(y1)〉+ 〈x, T ∗(y2)〉
= 〈x, αT ∗(y1)〉+ 〈x, T ∗(y2)〉
= 〈x, αT ∗(y1) + T ∗(y2)〉.

Since x ∈ V was arbitrary, it follows that T (αy1 + y2) = αT ∗(y1) + T ∗(y2), so T ∗ is linear.

(2) Say β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wn}. Let A = (aij) = [T ]γβ . Let B = (bij) = [T ∗]βγ . Then
by Proposition 4.2.8,

bij = 〈T ∗(wj), vi〉 = 〈vi, T ∗(wj)〉 = 〈T (vi), wj〉 = aji,

so B = A∗, as required.

This completes the proof.

4.8.3 Definition. Let V be a finite-dimensional inner product space. Let T : V → V be linear. We say
that T is positive semidefinite if T is Hermitian and 〈T (x), x〉 ≥ 0 for all x ∈ V .

4.8.4 Proposition. Let V be a finite-dimensional inner product space. Let T : V → V be a linear operator.
Then

(1) T is positive semidefinite if and only if T = T ∗ and σ(T ) ⊆ [0,∞)

(2) T is positive semidefinite if and only if T = U∗U for some linear operator U : V → V .

Proof.

(1) (⇒) Suppose T is positive semidefinite. Then T = T ∗ by definition; it follows that σ(T ) ⊆ R. If
T has a negative eigenvalue, i.e., there exists 0 > λ ∈ R, 0 6= v ∈ V such that T (v) = λv, then
〈T (v), v〉 = 〈−λv, v〉 = −λ〈v, v〉 < 0, since 〈v, v〉 ∈ R+. But since T is positive semidefinite, this
cannot be, so T has no negative eigenvalues. Hence σ(T ) ⊆ [0,∞).

(⇐) Suppose T = T ∗ and σ(T ) ⊆ [0,∞). Let β = {v1, v2, . . . , vn} be an orthonormal basis for V
composed of eigenvectors of T , where n = dimV . Say T (vi) = λivi for 1 ≤ i ≤ n. Let x ∈ V . Then
x = a1v1 + a2v2 + · · ·+ anvn for some a1, a2, . . . , an ∈ F . Then

〈T (x), x〉 = 〈a1T (v1) + a1T (v2) + · · ·+ anT (vn), a1v2 + a2v2 + · · ·+ anvn〉
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= 〈a1λ1v1 + a1λ2v2 + · · ·+ anλnvn, a1v2 + a2v2 + · · ·+ anvn〉
= a1λ1a1〈v1, v1〉+ a2λ2a2〈v2, v2〉+ anλnan〈vn, vn〉
= |a1|2λ1 + |a2|2λ2 + · · ·+ |an|2λn.

Since λ1, λ2, . . . , λn ≥ 0, 〈T (x), x〉 ≥ 0, so T is positive semidefinite.

(2) (⇐) Suppose T = U∗U for some linear operator U : V → V . Let x ∈ V . Then

〈T (x), x〉 = 〈U∗U(x), x〉 = 〈U(x), U(x)〉 ∈ [0,∞),

so T is positive definite.

(⇒) Suppose T is positive semidefinite. Since T is Hermitian by definition, there exists an orthonormal
basis β = {v1, v2, . . . , vn} for V consisting of eigenvectors of T . Furthermore, each vi corresponds to
some eigenvalue λi ∈ [0,∞). Define U(vi) =

√
λivi for each vi and extend via linearity. Then β is

an orthonormal basis for V composed of eigenvectors of U , so U is normal. Therefore each vi is a√
λi =

√
λi eigenvector for U∗. Then for each vi ∈ β, U∗U(vi) = λivi = T (vi), so T = U∗U .

This completes the proof.

4.8.5 Proposition. Let V,W be finite-dimensional inner product spaces over F . Let T : V →W be linear.
Then T ∗T and TT ∗ are positive semidefinite with rank(T ∗T ) = rank(T ) and rank(T ∗) = rank(TT ∗).

Proof. Let x ∈ V , y ∈W . We see that

〈T ∗T (x), x〉 = 〈T (x), T (x)〉 ∈ [0,∞) 〈TT ∗(y), y〉 = 〈T ∗(y), T ∗(y)〉 ∈ [0,∞),

so T ∗T and TT ∗ are positive semidefinite.
We claim that Null(T ) = Null(T ∗T ). Clearly Null(T ) ⊆ Null(T ∗T ). Let x ∈ Null(T ∗T ). Then

〈T (x), T (x)〉 = 〈x, T ∗T (x)〉 = 〈x, 0〉 = 0

so T (x) = 0 and in fact Null(T ∗T ) = Null(T ). Similarly, Null(TT ∗) = Null(T ∗). Therefore we must have
rank(T ) = rank(T ∗T ) and rank(T ∗) = rank(TT ∗), so we’re done.

4.8.6 Theorem (Singular Value Decomposition). Let V,W be finite-dimensional inner product spaces over
the same field F . Let T : V → W be linear. Let rank(T ) = r. Then there exist orthonormal bases
{v1, v2, . . . , vn} and {u1, u2, . . . , um} for V and W respectively and real scalars σ1 ≥ σ2 ≥ · · · ≥ σr > 0
such that T (vi) = σiui for i ≤ r and T (vi) = 0 for i > r. (For r < i < n, we define σi = 0.) Conversely,
if the above conclusion holds, then each vi is a σ2

i eigenvector of T ∗T . In particular, the σis are uniquely
determined.

Proof. Consider T ∗T : V → V . By Proposition 4.8.5, T ∗T is positive semidefinite, and rank(T ∗T ) =
rank(T ) = r. Since T ∗T is Hermitian, there exists an orthonormal basis {v1, v2, . . . , vn} for V consist-
ing of eigenvectors of T ∗T . Say T ∗T (vi) = λivi for 1 ≤ i ≤ n, where λi ∈ [0,∞). For 1 ≤ i ≤ n, let
σi =

√
λi. Without loss of generality, assume λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and λi = 0 for r < i ≤ n. Then

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and σi = 0 for r < i ≤ n. For i ≤ r, let ui = 1
σi
T (vi). Then

〈ui, uj〉 =

〈
1

σi
T (vi),

1

σj
T (vj)

〉
=

1

σiσj
〈T ∗T (vi), vj〉 =

1

σiσj
〈λivi, vj〉 =

λi
σiσj

〈vi, vj〉 = δij .

Therefore {u1, u2, . . . , ur} is an orthonormal set. By the Gram-Schmidt procedure, we may extend this to an
orthonormal basis {u1, u2, . . . , ur, . . . , um} for W . Then for i ≤ r, T (vi) = σiui and for i > r, T ∗T (vi) = 0,
so by the proof of Proposition 4.8.5, T (vi) = 0. July 10

It remains to show that the σis are uniquely determined. Suppose we have uis, vis, and σis as in the
theorem statement. Then

T ∗(ui) =

n∑
j=1

〈T ∗(ui), vj〉vj =

n∑
j=1

〈ui, T (vj)〉vj =

{
σivi 1 ≤ i ≤ r
0 r < i ≤ n

.
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For i ≤ r, T ∗T (vi) = T ∗(σiui) = σiT
∗(ui) = σ2

i vi and for i > r T ∗T (vi) = T ∗(0) = σivi. Therefore the σis
are the square roots of the eigenvalues of T ∗T , so they are uniquely determined, and we’re done.

4.8.7 Definition. 4 In the Singular Value Theorem, the σis are called the singular values of T . If r < m, n,
then we also call σr+1 = σr+2 = · · · = σk = 0, where k = min(m,n), singular values of T .

4.8.8 Example. Let T : R2 → R3 be given by T (x, y) = (x, x+y, x−y). Let βi be the standard (orthonormal)
basis for Ri. 5 Then

[T ]β3

β2
=

1 0
1 1
1 −1

 = A.

Then

[T ∗T ]β2

β2
= [T ∗]β2

β3
[T ]β3

β2
=
(
[T ]β3

β2

)∗
[T ]β3

β2
= A∗A =

[
1 1 1
0 1 −1

]1 0
1 1
1 −1

 =

[
3 0
0 2

]
.

Therefore β2 = {v1 = e1, v2 = e2} is an orthonormal basis for R2 such that T ∗T (v1) = 3v1 and T ∗T (v2) =
2v2. Setting λ1 = 3 > 2 = λ2, we obtain σ1 =

√
3 and σ2 =

√
2. Let u1 = 1

σ1
T (v1) = 1√

3
(1, 1, 1) and

u2 = 1
σ2
T (v2) = 1√

2
(0, 1,−1). Conveniently, {u1, u2, e3} is a basis for R3. Applying the Gram-Schmidt

procedure, let

u3 = e3 −
〈e3, u1〉
‖u1‖2

u1 −
〈e3, u2〉
‖u2‖2

u2 = e3 −
1√
3
u1 +

1√
2
u2 =

0
0
1

− 1

3

1
1
1

+
1

2

 0
1
−1

 =
1

6

−2
1
1


Then setting u3 = 1√

6
(−2, 1, 1) gives us an orthonormal basis γ = {u1, u2, u3} for R3. Let β = {v1, v2}.

Then
[T ]β3

β2
= [I]β3

γ [T ]γβ [I]ββ2
= [I]β3

γ [T ]γβ
(
[I]β2

β

)∗
= UDV ∗,

where

U =
[
u1 u2 u3

]
=

1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6

1/
√

3 −1/
√

2 1/
√

6

 D =

√3 0

0
√

2
0 0

 V =
[
v1 v2

]
=

[
1 0
0 1

]
.

4.8.9 Definition. Let A ∈Mm×n(F ). The singular values of A are the singular values of LA : Fn → Fm.

4.8.10 Theorem (Singular Value). Let A ∈Mm×n(F ). Let rank(A) = r. Say the singular values of A are
σ1 ≥ σ2 ≥ · · ·σr > 0. Then there exist unitary U ∈Mm(F ) and unitary V ∈Mn(F ) such that A = UDV ∗,
where D = (dij) and

dij =

{
σi i = j

0 i 6= j
.

5 Tensors
July 12

5.1 Quotient Spaces

5.1.1 Notation. Throughout this section, F denotes an arbitrary field (no longer restricted to R or C) and
V denotes a vector space over F .

5.1.2 Definition. Let V be a vector space over F . Let W ≤ V , v ∈ V . The coset of W in V , containing
v, is v + W := {v + w : w ∈ W}. We use the notation V/W := {v + W : v ∈ V }. Additionally, we shall
sometimes denote v +W = v when the subspace W is clear.

4Definition 4.8.7 was presented on July 8, before the proof of the Singular Value Decompositionl Theorem.
5We avoid using σi to avoid confusion with singular values.
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5.1.3 Remark. Let W ≤ V . Note that a + W = b + W ⇐⇒ a − b ∈ W , and in particular a + W =
0 +W ⇐⇒ a ∈W .

5.1.4 Proposition. Let W ≤ V . Then V/W is a vector spaces over F when equipped with the operations

(a+W ) + (b+W ) = (a+ b) +W α(a+W ) = (αa) +W.

Proof. These operations satisfy the vector space axioms since V is a vector space. We just need to check that
they are well-defined. Accordingly, suppose a, b, a′, b′ ∈ V such that a+W = a′+W and b+W = b′+W . Then
a−a′ ∈W and b−b′ ∈W , so (a+b)−(a′+b′) = (a−a′)+(b−b′) ∈W , and therefore (a+b)+W = (a′+b′)+W .
Furthermore, αa−αa′ = α(a−a′) ∈W , so (αa)+W = (αa′)+W . Therefore these operations are independent
of the choice of coset representative, so we’re done.

5.1.5 Example. In P3(R)/P2(R), 6x3 − 5x2 + 2x− 1 = 6x3.

5.1.6 Definition. Let V,W be vector spaces over F . We say that V and W are isomorphic and write
V ∼= W when there exists an invertible linear transformation T : V → W . We call such an invertible linear
transformation an isomorphism.

5.1.7 Theorem (First Isomorphism Theorem for Vector Spaces). Let V,W be vector spaces over F . Let
T : V →W be linear. Then V/Null(T ) ∼= T (V ) ≤ U via the isomorphism v 7→ T (v).

Proof. Define ϕ : V/Null(T ) → U by ϕ(v) = T (v). We claim that ϕ is a well-defined injective linear
transformation. Note that if u = v ∈ V/Null(T ), then u − v ∈ Null(T ), so T (u − v) = 0. Thus ϕ(u) =
T (u) = T (v) = ϕ(v), so ϕ is well-defined. Let x, y ∈ V/Null(T ), α ∈ F . Then

ϕ(αx+ y) = ϕ(αx+ y) = T (αx+ y) = αT (x) + y = αϕ(x) + ϕ(y),

so ϕ is linear. Finally, suppose that v ∈ Null(ϕ). Then ϕ(v) = T (v) = 0, so v ∈ Null(T ) = 0. Thus ϕ is
injective. It follows that V/Null(T ) ∼= T (V ), as required.

July 15
5.1.8 Example. Let V = M2(R). Let W = {A ∈ V : A = AT }. Then[

1 2
3 4

]
+W =

[
0 0
1 0

]
+W.

5.1.9 Proposition. Let V be a finite-dimensional vector space over F . Let W be a subspace of V . Say
{v1, v2, . . . , vm} is a basis for W . Then extend this basis to a basis for V , {v1, v2, . . . , vm, vm+1, . . . , vn}, where
n = dimV . Then {vm+1, vm+2, . . . , vn} is a basis for V/W . In particular, dim(V/W ) = dimV − dimW .

Proof. Let v = v +W ∈ V/W . Say v =
∑n
i=1 aivi, where a1, a2, . . . , an ∈ F . Then

v = am+1vm+1 + am+2vm+2 + · · ·+ anvn = am+1vm+1 + am+2vm+2 + · · ·+ anvn,

so this set spans V . Now suppose bm+1vm+1 + bm+2vm+2 + · · · + bnvn = 0 for some bm+1, bm+2, . . . , bn ∈
F . Then bm+1vm+1 + bm+2vm+2 + · · · + bnvn ∈ W , so bm+1 = bm+2 = · · · = bn = 0. Therefore
{vm+1, vm+2, . . . , vn} is a linearly independent spanning set, i.e., a basis, for V/W .

5.2 Tensor Products

5.2.1 Example. Let (a, b) ∈ C2. Let S = {(a, b) − (b, a) : a, b ∈ C} and let W = Span(S). In C2/W ,
(a, b)− (b, a) = 0, so (a, b) = (b, a).

5.1 Remark. Similarly to the above example, our goal is to turn a vector space V into a ring (T (v),+,⊗)
with an additional bilinear scalar multiplication operation.

5.2.2 Definition. Let X be a set of algebraically independent symbols. We define the free vector space on
X over F by

V = Free(X) = {α1x1 + α2x2 + · · ·+ αnxn : αi ∈ F, xi ∈ X},

with addition defined by
∑
αixi +

∑
βixi =

∑
(α+ β)xi and scalar multiplication by λ

∑
αixi =

∑
λiαixi.
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5.2.3 Example. Let F = R and X = {?, \,,}. Then in Free(X),(
− ?+2\− 15

2
,
)

+

(
2 ?−2\+

1

2
,
)

= ?+ 0\− 7,,

which we denote simply by ?− 7,.

5.2.4 Remark. By construction, X is a basis for Free(X).

5.2.5 Definition. Let V,W be finite-dimensional vector spaces over F . Let X = V ×W , treated as a set
of symbols. Let S be the set of vectors in Free(X) of one of the forms

� (x+ y, z)− (x, z)− (y, z)

� (z, x+ y)− (z, x)− (x, y)

� α(x, y)− (αx, y)

� α(x, y)− (xαy).

We define the tensor product of V and W to be V ⊕W : Free(X)/Span(S).

5.2.6 Notation. In V ⊗W , we denote (v, w) = v ⊗ w. Elements of this form are called pure tensors.
July 17

5.2.7 Remark. In V ⊗W , note that (v+w)⊗z−v⊗z−w⊗z = 0⊗0 =: 0. Therefore (v+w)⊗z = v⊗z+w⊗z.
Also, α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw).

5.2.8 Example. Consider C2 ⊗C C3. (This notation means that we are using the field of scalars C.) Let
the standard bases for C2 and C3 be σ2 = {a1, a2} and σ3 = {b1, b2, b3} respectively. Then

(1, 2)⊗ (1, 2, 3) = (a1 + 2a2)⊗ (b1 + 2b2 + 3b3)

= a1 ⊗ (b1 + 2b2 + 3b3) + 2(a2 ⊗ (b1 + 2b2 + 3b3))

= (a1 ⊗ b1) + 2(a1 ⊗ b2) + 3(a1 ⊗ b3) + 2(a2 ⊗ b1) + 4(a2 ⊗ b2) + 6(a2 ⊗ b3).

5.2.9 Proposition. Let V,W be finite-dimensional vector spaces over F . Suppose that {v1, v2, . . . , vn} and
{w1, w2, . . . , wm} are bases for V and W respectively. Then a basis for V ⊗F W is

{vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

In particular, dimF (V ⊗F W ) = nm = dimF (V ) dimF (W ).

5.2.10 Theorem (Universal Property of Tensor Products). Let V,W,Z be vector spaces over some field F .
Let ϕ : V ×W → Z be bilinear. Then there exists a unique linear transformation T : V ⊗W → Z defined by
T (v ⊗ w) = ϕ(v, w). Moreover, all linear transformations V ⊗W → Z can be constructed in this way.

5.2.11 Remark. Let V be a finite-dimensional vector space over F . Let {v1, v2, . . . , vn} be a basis for V . For
each 1 ≤ i ≤ n, define v∗i : V → F by v∗i (vj) = δij for 1 ≤ j ≤ n. Then {v∗1 , v∗2 , . . . , v∗n} is a basis for V ∗.

5.2.12 Notation. Let V,W be finite-dimensional vector spaces over F . We denote the collection of linear
transformations from V to W by L(V,W ). Note that L(V,W ) is a vector space over F .

5.2.13 Example. Let V,W be finite-dimensional vector spaces over F . We show that V ∗⊗FW ∼= L(V,W ).
Define ϕ : V ∗×W → L(V,W ) by ϕ(f, w)(v) = f(v)w, where v ∈ V is arbitrary. Confirm that ϕ is bilinear

and well-defined. By the Universal Property, there is a linear transformation T : V ∗ ⊗F W → L(V,W ) such
that T (f ⊗ w) = ϕ(f, w). We will show that T is an isomorphism by explicitly constructing its inverse. July 19

Let {w1, w2, . . . , wm} be a basis for W . Define a basis for W ∗ by {w∗1 , w∗2 , . . . , w∗m} as in Remark 5.2.11.
Define U : L(v, w) → V ∗ ⊗F W by U(F ) =

∑m
i=1(w∗i ◦ F ) ⊗ wi. Let v ∈ V . Say F (v) =

∑m
i=1 αiwi, where

α1, α2, . . . , αm ∈ F . Then

(TU)(F )(v) = T

(
m∑
i=1

(w∗i F )⊗ wi

)
(v) =

m∑
i=1

w∗i (F (v))wi =

m∑
i=1

w∗i

 m∑
j=1

αjwj

wi =

m∑
i=1

αiwi = F (v),

so U = T−1, and therefore T is an isomorphism, as claimed.
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5.3 Tensor and Exterior Algebras

5.3.1 Definition. Let F be a field. An F -algebra is a vector space A over F equipped with a multiplication
map · : A×A→ A such that

� a · (b · c) = (a · b) · c

� a · (b+ c) = a · b+ a · c

� (a+ b) · c = a · c+ b · c

� α(a · b) = (αa) · b = a · (αb)

for all a, b, c ∈ A, α ∈ F .

5.3.2 Definition. Let V be a vector space over F . For k ∈ N, we define T k(V ) =
⊗k

i=1 V . Elements of
T k(V ) are called k-tensors. We also define T 0(V ) = F .

5.3.3 Aside. Let V be a vector space over F . Let W1,W2,W3, . . . ≤ V . We define the direct product of
W1,W2,W3 . . . to be

∞∏
i=1

wi = {(a1, a2, a3, . . .) : ai ∈Wi}

and the direct sum of W1,W2,W3 . . . to be

∞⊕
i=1

Wi = {(a1, a2, a3, . . .) : ai ∈Wi, ai = 0 for all but finitely many i}.

We denote (a1, a2, a3, . . .) ∈
⊕∞

i=1Wi by a1 + a2 + a3 + · · · . Note however, that this is notation only; we are
not using addition in V .

5.3.4 Example. For i = 0, 1, 2, . . ., define Wi = SpanR{xi}. Then
⊕∞

i=1Wi = R[x].

5.3.5 Definition. We define the tensor algebra of V by T (V ) =
⊕∞

i=0 T
i(V ). Elements of T (V ) look like

finite linear combinations of k-tensors.

5.3.6 Example. Let F = R and let V be a vector space over R. Let x, y ∈ V . Then

3 + 2(x⊗ y)− 1

7
(x⊗ x⊗ y) + 87(x⊗ x⊗ x⊗ x⊗ x) ∈ T (V ).

5.3.7 Definition. In T (V ), multiplication is defined by

(v1 ⊗ v2 ⊗ · · · ⊗ vk)(u1 ⊗ u2 ⊗ · · · ⊗ u`) = v1 ⊗ v2 ⊗ · · · ⊗ vk ⊗ u1 ⊗ u2 ⊗ · · · ⊗ u`

and then extended by distributivity.

5.3.8 Definition. Let V be a vector space over F . Let A(V ) in T (V ) be the ideal generated by elements
of the form v ⊗ v, where v ∈ V . We define the exterior algebra of V by

∧
(V ) = T (V )/A(V ), equipped with

operations given by x+ y = x+ y, αx = αx, and x y = xy for all x, y ∈ T (V ), α ∈ F .

5.3.9 Notation. In
∧

(V ), we denote v1 ⊗ v2 ⊗ · · · ⊗ vk by v1 ∧ v2 ∧ · · · ∧ vk.

5.3.10 Example. In
∧

(V ),

0 = (x+ y) ∧ (x+ y) = x ∧ x+ x ∧ y + y ∧ x+ y ∧ y = x ∧ y + y ∧ x,

so x ∧ y = −(y ∧ x). Similarly, a ∧ b ∧ c ∧ a ∧ e = 0. Note that 0⊗ v = 0(0⊗ v) = 0 for any v ∈ V .
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6 Functional Analysis
July 22

6.1 Definition. Let (V, ‖ · ‖) be a normed vector space.

(1) We say that a sequence (xn) in V converges to x ∈ V , denoted xn → x, if for all ε > 0, there exists
N ∈ N such that for all n ∈ N, n ≥ N =⇒ ‖xn − x‖ < ε.

(2) We say that a sequence (xn) in V is Cauchy if for all ε > 0, there exists N ∈ N such that for all
n,m ∈ N, n,m ≥ N =⇒ ‖xn − xn‖ < ε.

(3) We say that V is complete if every Cauchy sequence in V converges in V .

(4) If V is complete, we call it a Banach space.

(5) If V is a Banach Space and the norm on V is defined by ‖v‖ =
√
〈v, v〉 for some inner product 〈·, ·〉 on

V , we call V a Hilbert space.

6.2 Example. (Rn, ‖ · ‖) and (Cn, ‖ · ‖) are Hilbert spaces. In fact, they are the only finite-dimensional
Hilbert spaces, up to isomorphism.

6.3 Definition. Define

c00 = {(xn)∞n=1 : xn ∈ R, xn = 0 for all but finitely many n ∈ N}

c0 =
{

(xn)∞n=1 : xn ∈ R, lim
n→∞

xn = 0
}

A norm on c00 and c0 is given by ‖(xn)‖∞ = maxn∈N{|xn|}.

6.4 Example. Let xn =
(
1, 12 ,

1
3 , . . . ,

1
n , 0, 0, . . .

)
. We claim that (xn) ∈ c00 is Cauchy. Accordingly, let

ε > 0. Choose n ∈ N such that 1
N < ε. Suppose n,m ≥ N ; without loss of generality assume n < m. Then

‖xn − xm‖∞ =
1

n+ 1
<

1

n
≤ 1

N
< ε.

However, it is clear that xn → x, where x =
(
1, 12 ,

1
3 , . . .

)
6∈ c00. By the uniqueness of limits, it follows that

c00 is not a Banach space.

6.5 Example. (c0, ‖ · ‖∞) is a Banach space, for reasons apparent from the preceding example.

6.6 Definition. Define

`∞ =

{
(an)∞n=1 : an ∈ R, sup

n∈N
|an| <∞

}
.

A norm on `∞ is given by ‖(an)‖∞ = supn∈N{|an|}.

6.7 Example. We claim that (`∞, ‖ · ‖∞) is a Banach space. Let (xn) be a Cauchy sequence in `∞. We
write

xn =
(
x(1)n , x(2)n , x(3)n , . . .

)
.

Let ε > 0. Then there exists N1 ∈ N such that ‖xn − xm‖∞ < ε
2 for n,m ≥ N1. Then for every i ∈ N, for

n,m ≥ N1, we have ∣∣∣x(i)n − x(i)m ∣∣∣ ≤ ‖xn − xm‖∞ <
ε

2
< ε.

Therefore the component sequences are Cauchy, hence convergent. Say each
(
x
(i)
n

)
converges to ai as n→∞.

Let x = (a1, a2, a3, . . .). We claim that x ∈ `∞. Note that there exists N2 ∈ N such that ‖xn−xm‖∞ < 1
for n,m ≥ N2. Then for n,m ≥ N2, i ∈ N,∣∣∣x(i)n − x(i)m ∣∣∣ ≤ ‖xn − xm‖∞ < 1.

Now, ∣∣∣x(i)n − ai∣∣∣ = lim
m→∞

∣∣∣x(i)n − x(i)m ∣∣∣ ≤ 1,
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so for n ≥ N2,

sup
i∈N
|ai| = sup

i∈N

∣∣∣ai − x(i)n + x(i)n

∣∣∣ ≤ sup
i∈N

{∣∣∣ai − x(i)n ∣∣∣+
∣∣∣x(i)n ∣∣∣} ≤ 1 + ‖xn‖∞ <∞.

Therefore x ∈ `∞.
Now claim that xn → x. For i ∈ N, n,m ≥ N1,∣∣∣x(i)m − x(i)n ∣∣∣ ≤ ‖xm − xn‖∞ <

ε

2
.

Then ∣∣∣x(i)m − ai∣∣∣ = lim
n→∞

∣∣∣x(i)m − x(i)n ∣∣∣ ≤ ε

2
.

For m ≥ N1,

‖xm − x‖∞ = sup
i∈N

∣∣∣x(i)m − ai∣∣∣ ≤ ε

2
< ε.

Therefore xn → x. It follows that (`∞, ‖ · ‖∞) is a Banach space.

6.8 Remark. A closed subset of a Banach space is also a Banach space.

6.9 Example. c0 ⊆ `∞ is a Banach space.
July 24

6.10 Definition. Let p ∈ [1,∞). Let (an)∞n=1 be a sequence in R. Define the ‖ · ‖p to be

‖(an)‖p =

( ∞∑
n=1

|an|p
) 1

p

.

Define `p = {(an)n : ‖(an)‖p <∞}.

6.11 Fact. (`p, ‖·‖p) is a Banach space. When p = 2, `2 is a Hilbert space, where 〈(an), (bn)〉 =
∑∞
n=1 anbn.

6.12 Fact. Let (V, ‖ · ‖) be a normed vector space. Then the parallelogram law holds in V if and only if ‖ · ‖
is induced by an inner product.

6.13 Example. We claim that `∞ is not a Hilbert space. Let x = (1, 0, 0, . . .), y = (0, 1, 0, . . .). Then

‖x+ y‖2∞ + ‖x− y‖2∞ = 12 + 12 = 2 6= 4 = 2(1 + 1) = 2(‖x‖2∞ + ‖y‖2∞).

Therefore the parallelogram law does not hold in `∞, so `∞ is not a Hilbert space by Fact 6.12.

6.14 Fact. (`p, ‖ · ‖p) is a Hilbert space if and only if p = 2.

6.15 Remark. Using the same x, y as in Example 6.13, but in `p instead of `∞, we have

‖x+ y‖2p + ‖x− y‖2p = (1p + 1p)
2
p + (1p + 1p)

2
p = 2

2
p+1

while
2(‖x‖2p + ‖y‖2p) = 2(1 + 1) = 4.

Clearly equality does not hold unless p = 2, which gives some insight into Fact 6.14.

6.16 Definition. Let V,W be normed vector spaces. Let T : V →W be linear. We say that

(1) T is continuous at v ∈ V if for all ε > 0, there exists δ > 0 such that for all x ∈ V ,

‖x− v‖ < δ =⇒ ‖T (x)− T (v)‖ < ε.

(2) T is continuous if it is continuous at every v ∈ V .

(3) T is bounded if there exists C ≥ 0 such that ‖T (x)‖ ≤ C‖x‖ for all x ∈ V .
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6.17 Theorem. Let V,W be normed vector spaces. Let T : V →W be linear. The following are equivalent:

(1) T is continuous.

(2) T is continuous at 0.

(3) T is bounded.

(4) n1 = sup{‖T (x)‖ : ‖x‖ ≤ 1} <∞.

(5) n2 = sup{‖T (x)‖ : ‖x‖ = 1} <∞.

Proof. (1) ⇒ (2) Trivial.
(2) ⇒ (3) Suppose T is continuous at 0. Then there exists δ > 0 such that ‖x‖ < δ =⇒ ‖T (x)‖ < 1.

For 0 6= x ∈ V ,
δ

2‖x‖
‖T (x)‖ =

∥∥∥∥T ( δ

2‖x‖
x

)∥∥∥∥ < 1,

since
∥∥ δ
2‖x‖x

∥∥ < δ. Therefore

‖T (x)‖ < 2

δ
‖x‖,

so we set C = 2
δ and the result follows.

(3) ⇒ (4) Suppose T is bounded. Say ‖T (x)‖ ≤ C‖x‖, C ≥ 0. Then for x ∈ V with ‖x‖ ≤ 1,
‖T (x)‖ ≤ C‖x‖ ≤ C, so n1 ≤ C <∞.

(4) ⇒ (5) Trivial.
(5) ⇒ (1) Suppose n2 <∞. Let v ∈ V . Let ε > 0. Choose δ = ε

n2+1 . Suppose x ∈ V with ‖x− v‖ < δ.
If x = v then ‖T (x)− T (v)‖ = 0 < ε. Otherwise,

‖T (x)− T (v)‖ = ‖T (x− v)‖ =

∥∥∥∥T ( x− v
‖x− v‖

)∥∥∥∥ ‖x− v‖ ≤ n2‖x− v‖ < n2δ < ε,

so T is continuous. This completes the proof.

6.18 Remark. Suppose T : V →W is continuous and n1, n2 are defined as in Theorem 6.17. Clearly n2 ≤ n1.
If x ∈ V with 0 < ‖x‖ ≤ 1, we have ∥∥∥∥T ( x

‖x‖

)∥∥∥∥ =
1

‖x‖
‖T (x)‖ ≤ n2,

so ‖T (x)‖ ≤ n2‖x‖ ≤ n2. Therefore n1 ≤ n2, so n1 = n2. We can use n2 to define the operator norm given
by

‖T‖ = sup
‖x‖=1

‖T (x)‖.

This completes the course.
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