MATH 245 Notes

Spencer Wilson

May 6 - July 25, 2019

Contents

1 Rings and Fields 2
2 Polynomials of Linear Operators 5
3 Jordan Canonical Form 8
3.1 Generalized Eigenvectors and Eigenspaces 8
3.2 Finding the Jordan Canonical Form of a Matrix 10
4 Inner Product Spaces 13
4.1 Foundations 13
4.2 Orthogonality and Orthonormality 15
4.3 The Adjoint 20
4.4 Least Squares Approximation 22
4.5 Normal, Hermitian, and Unitary Operators 23
4.6 Rigid Motions 27
4.7 Spectral Decomposition 29
4.8 Singular Value Decomposition 32
5 Tensors 34
5.1 Quotient Spaces 34
5.2 Tensor Products 35
5.3 Tensor and Exterior Algebras 37
6 Functional Analysis 38
Lectures

Monday, May 6	2	Monday, June 3	13	Friday, June 28	26
Wednesday, May 8	2	Wednesday, June 5	15	Wednesday, July 3	29
Friday, May 10	4	Friday, June 7	16	Friday, July 5	30
Monday, May 13	5	Monday, June 10	18	Monday, July 8	31
Wednesday, May 15	6	Wednesday, June 12	19	Wednesday, July 10	33
Friday, May 17	6	Friday, June 14	20	Friday, July 12	34
Wednesday, May 22	7	Monday, June 17	21	Monday, July 15	35
Friday, May 24	8	Wednesday, June 19	22	Wednesday, July 17	36
Monday, May 27	9	Friday, June 21	23	Friday, July 19	36
Wednesday, May 29	10	Monday, June 24	24	Monday, July 22	38
Friday, May 31	12	Wednesday, June 26	25	Wednesday, July 24	39

1 Rings and Fields

1.1 Definition. A ring is a set R equipped with the operations $+: R \times R \rightarrow R$ and $\cdot: R \times R \rightarrow R$ such that
(1) for all $a, b, c \in R,(a+b)+c=a+(b+c)$;
(2) for all $a, b, c \in R,(a \cdot b) \cdot c=a \cdot(b \cdot c)$;
(3) for all $a, b \in R, a+b=b+a$;
(4) there exists $0 \in R$ such that $a+0=0+a=a$ for all $a \in R$;
(5) for all $a \in R$, there exists $b \in R$ such that $a+b=0$ (we denote this b by $-a$);
(6) For all $a, b, c \in R, a \cdot(b+c)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=b \cdot a+c \cdot a$.
1.2 Notation. The above axioms allow the the following notation.
$(1)+(a, b) \equiv a+b$ and $\cdot(a, b) \equiv a \cdot b \equiv a b$.
(2) By associativity, $a+b+c$ and $a b c$ are well-defined.
(3) For $n \in \mathbb{N}, a^{n}:=\underbrace{a a \cdots a}_{n \text { times }}$ and $n a:=\underbrace{a+a+\cdots+a}_{n \text { times }}$.
(4) $a+(-b) \equiv a-b$.
1.3 Example. The following are rings:
(a) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C}
(b) \mathbb{Z}_{n} for $n \in \mathbb{N}$
(c) $R[x]$ and $M_{n}(R)$ for any ring R
(d) $R_{1} \oplus R_{2}:=\left\{(a, b): a \in R_{1}, b \in R_{2}\right\}$ for any rings R_{1} and R_{2}.
1.4 Example. The following are not rings:
(a) the odd numbers, since there is no 0 element
(b) $\mathcal{C}(\mathbb{R})$ under pointwise addition and function composition, since distributivity breaks.
1.5 Definition. We also consider two special types of rings.
(1) We say a ring R is commutative if $a b=b a$ for all $a, b \in R$.
(2) We say a ring R is unital if there exists $1 \in R$ such that $1 a=a 1=a$ for all $a \in R$. We call 1 the unity, or "one," of R.
1.6 Example. $2 \mathbb{Z}$ is a non-unital, commutative ring. $\mathrm{M}_{n}(2 \mathbb{Z})$ is a non-unital, non-commutative ring.
1.7 Convention. Only the trivial ring is allowed to have trivial multiplication, i.e., $a b=0$ for all $a, b \in R$. Furthermore, the trivial ring is not unital.
1.8 Definition. Let R be a commutative ring. We say $a \in R$ is a zero divisor if $a \neq 0$ and there exists $b \neq 0$ such that $a b=0$.
1.9 Example. In $\mathbb{Z}_{6}, 2$ and 3 are zero divisors, since $2 \cdot 3=0$.
1.10 Remark. For any $a \in \mathbb{Z}_{n}, a$ is a zero divisor if and only if $\operatorname{gcd}(a, n) \neq 1$ and $a \neq 0$.
1.11 Definition. A ring R is an integral domain if R is commutative and unital and has no zero divisors.
1.12 Example. The following are integral domains:
(a) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
(b) \mathbb{Z}_{p}, where p is prime
(c) $R[x]$ for any integral domain R.
1.13 Example. The following are not integral domains:
(a) \mathbb{Z}_{n}, where $n>1$ is not prime (zero divisors)
(b) $M_{n}(\mathbb{R})$, where $n>1$ (not commutative)
(c) $2 \mathbb{Z}$ (not unital)
(d) $\mathbb{R} \oplus \mathbb{R}$ (zero divisors).
1.14 Proposition. Let R be an integral domain. If $a, b, c \in R$ with $a \neq 0$ and $a b=a c$, then $b=c$.

Proof. Since $a b=a c, a b-a c=0$, so $a(b-c)=0$. Since $a \neq 0$ and R is an integral domain, we must have $b-c=0$, i.e., $b=c$.
1.15 Remark. The above is true in any commutative ring when a is not a zero divisor.
1.16 Definition. Let R be a commutative, unital ring. We say $a \in R$ is a unit (or is invertible) if there exists $b \in R$ such that $a b=1$. We call b the inverse of a and write $b=a^{-1}$. We denote the set (group) of units of R by R^{\times}or $\mathcal{U}(R)$.
1.17 Example. Let $1<n \in \mathbb{Z}$.
(a) If n is prime, then $\mathcal{U}\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p} \backslash\{0\}$.
(b) In general, $\mathbb{Z}_{n}^{\times}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}$.
1.18 Remark. If $a \in R^{\times}$, then a is not a zero divisor, since $a \neq 0$ and $a b=0$ implies $a^{-1} a b=0$, i.e., $b=0$.
1.19 Definition. A ring F is a field if F is commutative and unital and every non-zero element is a unit.
1.20 Example. The following are fields:
(a) Z_{p}, where p is prime
(b) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
(c) $Q(\sqrt{2})$
(d) $F(x)$, the set of rational functions over F, where F is a field.
1.21 Proposition. Every field is an integral domain.

Proof. If F is a field, then F is commutative and unital by definition. Furthermore, since every non-zero element is a unit, F has no zero divisors by 1.18. Thus F is an integral domain.
1.22 Remark. The converse of 1.21 is not true: \mathbb{Z} and $F[x]$ for any field F are integral domains but not fields.
1.23 Definition. Let R be a unital ring. We define the characteristic of R to be the least positive integer n such that $n=0$ in R. That is,

$$
n:=n \cdot 1=\underbrace{1+1+\cdots+1}_{n \text { times }}=0 .
$$

If no such n exists, we say that R has characteristic 0 . Our notation is $\operatorname{char}(R)=0$ or $\operatorname{char}(R)=n$.
1.24 Example. If $R=\mathbb{Z}_{4}[x]$, then $\operatorname{char}(R)=4$.
1.25 Remark. Let R be a ring with characteristic 0 . Then each of $1,2,3, \ldots$ is distinct, and thus R is infinite.

1．26 Proposition．If R is an integral domain，then $\operatorname{char}(R)=0$ or $\operatorname{char}(R)=p$ ，where p is prime．
Proof．If $\operatorname{char}(R)=n \neq 0$ and n is not prime，then $n=a b$ when $a, b<n$ ，and thus $a b=0$ in R ．But R has not zero divisors，so n must be either 0 or prime．

1．27 Example．If $R=\mathbb{Z}_{p}(x)$ ，then $\operatorname{char}(R)=p$ ．
1．28 Definition．Let $(R,+, \cdot)$ be a ring．We say that $S \subseteq R$ is a subring of R if $(S,+, \cdot)$ forms a ring．
1．29 Example． $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ ，and $\mathbb{Q}(\sqrt{2})$ are all subrings of \mathbb{C} ．
1．30 Proposition（Subring Test）．Let R be a ring and let $\varnothing \neq S \subseteq R$ ．Then S is a subring of R if and only if
（1）for all $a, b \in S, a-b \in S$
（2）for all $a, b \in S, a b \in S$ ．
Proof．Clearly if S is a subring of R ，then conditions（1）and（2）hold．Conversely，suppose conditions（1） and（2）hold．Let $a, b \in S$ ．Then $0=a-a \in S$ ，so $0 \in S$ ．Additionally， $0-b=-b \in S$ ，so S contains additive inverses．Finally，$a+b=a-(-b) \in S$ and $a b \in S$ ，so S is closed under the operations of R 。 井

1．31 Example．We claim that $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R} ．Indeed， $\mathbb{Q}(\sqrt{2})$ is a subring of \mathbb{R} by the subring test，and for any $0 \neq a+b \sqrt{2} \in \mathbb{Q}(\sqrt{2})$ ，

$$
(a+b \sqrt{2})^{-1}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}
$$

Note that $a^{2}-2 b^{2} \neq 0$ by the irrationality of $\sqrt{2}$ ．
1．32 Definition．Let R be a ring．A subring I of R is an ideal of R if for all $a \in I, r \in R$ ，ar，$r a \in I$ ．
1．33 Example．$n \mathbb{Z}$ is an ideal of \mathbb{Z} ．
1．34 Example．Let $R=\mathcal{C}(\mathbb{R})$ ．Then $I=\{f(x) \in R: f(2)=0\}$ is an ideal of R ．
1．35 Example． \mathbb{R} is a subring of \mathbb{C} but not an ideal．
1．36 Remark．If F is a field，then the only ideals of F are $\{0\}$ and F ．
1．37 Definition．Let R be a commutative，unital ring．The ideal $\langle x\rangle:=\{r x: r \in R\}$ is called the principal ideal of R generated by x ．

1．38 Proposition（Division Algorithm）．Let F be a field．For all $f(x), g(x) \in F[x]$ with $g(x) \neq 0$ ，there exist unique $q(x), r(x) \in F[x]$ such that $f(x)=g(x) q(x)+r(x)$ ，where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$ ．

Proof．MATH 145.
1．39 Proposition．Let F be a field．Every ideal of F is principal．
Proof．Let I be an ideal of $F[x]$ ．If $I=\{0\}$ ，then $I=\langle 0\rangle$ ．Otherwise，let $g(x) \in I$ be nonzero of minimal degree in I ．We claim that $I=\langle g(x)\rangle$ ．

Clearly $\langle g(x)\rangle \subseteq I$ ．We now show that $I \subseteq\langle g(x)\rangle$ ．Let $f(x) \in I$ ．By the Division Algorithm，there exist $q(x), r(x) \in F[x]$ so that $f(x)=g(x) q(x)+r(x)$ ，where $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$ ．But $r(x)=f(x)-g(x) q(x)$ ，and $f(x), g(x) q(x) \in I$ ，so $\operatorname{deg} r(x) \geq \operatorname{deg} g(x)$ by minimality．Thus $r(x)=0$ ，so $f(x)=g(x) q(x) \in\langle g(x)\rangle$ ．Hence $I \subseteq\langle g(x)\rangle$ ，and in fact $I=\langle g(x)\rangle$ ．

2 Polynomials of Linear Operators

2.1 Notation. Throughout this section, unless otherwise stated, F is a field and V is a finite-dimensional vector space over F.
2.2 Definition. For $A \in M_{n}(F)$, the characteristic polynomial of A is $\operatorname{det}(A-x I)$. For $T: V \rightarrow V$, the characteristic polynomial of T is $\operatorname{det}\left([T]_{\beta}-x I\right)$, where β is any basis for V.
2.3 Definition. Let T be a linear operator. We say a subspace $W \leq V$ is T-invariant if $T(W) \subseteq W$.
2.4 Remark. If W is T-invariant, then $T_{W}: W \rightarrow W$ is well-defined.
2.5 Example. Consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(x+2 y, 4 y-x)$. Then $W=\{(x, x): x \in \mathbb{R}\}$ is T-invariant.
2.6 Example. Let $T: V \rightarrow V$ be a linear operator, and let λ be an eigenvalue for T. If $v \in E_{\lambda}$, then $T(T(v))=T(\lambda(v))=\lambda T(v)$, so $T(v) \in E_{\lambda}$. Thus $E_{\lambda}=\{v \in V: T(v)=\lambda v\}$ is T-invariant.
2.7 Definition. Let $T: V \rightarrow V$ be a linear operator. Let $0 \neq x \in V$. The subspace

$$
W_{T, x}:=\operatorname{Span}\left\{x, T(x), T^{2}(x), \ldots\right\}
$$

is called the T-cyclic subspace generated by x.
2.8 Remark. $W_{T, x}$ is the smallest T-invariant subspace of V containing x.
2.9 Proposition. Let $T: V \rightarrow V$ be a linear operator. Let $W \leq V$ be T-invariant. Then the characteristic polynomial of T_{W} divides the characteristic polynomial of T.

Proof. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis for W. Say $\left[T_{W}\right]_{\beta}=A$. Extend β to a basis

$$
\gamma=\left(v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}\right)
$$

for V. Say $[T]_{\gamma}=B$. Then

$$
B=\left[\begin{array}{c|c}
A & \star \\
\hline 0 & A^{\prime}
\end{array}\right],
$$

so $\operatorname{det}(B-x I)=\operatorname{det}(A-x I) \operatorname{det}\left(A^{\prime}-x I\right)$. Thus the characteristic polynomial of T_{W} divides the characteristic polynomial of T.

2.10 Proposition. Let $T: V \rightarrow V$ be a linear operator and $v \in V \neq 0$. Let $W=W_{T, v}$, and say $\operatorname{dim} W=k$.
(1) $\left\{v, T(v), T^{2}(v), \ldots, T^{k-1}(v)\right\}$ is a basis for W.
(2) If $f(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0} \in F[x]$ and $f(T)(v)=0$, then the characteristic polynomial of T_{W} is $(-1)^{k} f(x)$.

Proof.
(1) Let $j \in \mathbb{N}$ be maximal so that $\beta=\left\{v, T(v), \ldots, T^{j-1}(v)\right\}$ is linearly independent. (Note that since $v \neq 0, j$ must exist.) We claim that $j=k$.
Let $U=\operatorname{Span} \beta$. We will show that $U=W$. Now, since $\left\{v, T(v), \ldots, T^{j-1}(v), T^{j}(v)\right\}$ is linearly dependent, $T^{j}(v) \in U$. Thus U is T-invariant. Since $W=W_{T, v}$ is the smallest T-invariant subspace of V containing $v, W \subseteq U$. But clearly $U \subseteq W$, so $U=W$, and thus $j=k$.
(2) From (1), $\beta=\left\{v, T(v), \ldots, T^{k-1}(v)\right\}$ is a basis for W. Moreover, $f(T)(v)=0$, so

$$
a_{0} v+a_{1} T(v)+\cdots+a_{k-1} T^{k-1}(v)+T^{k}(v)=0
$$

i.e., $T^{k}(v)=-a_{0} v-a_{1} T(v)-\cdots-a_{k-1} T^{k-1}(v)$. Therefore,

$$
\left[T_{W}\right]_{\beta}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & & \\
0 & 0 & \cdots & 1 & -a_{k-1}
\end{array}\right]
$$

By Assignment 1, the characteristic polynomial of T_{W} is $(-1)^{k} f(x)$.
2.11 Theorem (Cayley-Hamilton). If $T: V \rightarrow V$ is a linear operator and $f(x) \in F[x]$ is its characteristic polynomial, then $f(T)=0$.

Proof. Let $T: V \rightarrow V$ be a linear operator and $f(x) \in F[x]$ be its characteristic polynomial. Since $f(T)$ is linear, $f(T)(0)=0$. Let $0 \neq v \in V$. We claim that $f(T)(v)=0$.

Let $W=W_{T, v}$ and say $\operatorname{dim} W=k$. Since $\left\{v, T(v), \ldots, T^{k-1}\right\}$ is a basis for W by 2.10 , the set $\left\{v, T(v), \ldots, T^{k-1}(v), T^{k}(v)\right\}$ is linearly dependent. Thus there exist $a_{0}, \ldots, a_{k} \in F$, not all 0 , such that

$$
a_{0} v+a_{1} T(v)+\cdots+a_{k-1} T^{k-1}(v)+a_{k} T^{k}(v)=0
$$

We may assume without loss of generality that $a_{k}=1$. Let $g(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$, so that $g(T)(v)=0$. Since $\operatorname{deg} g(x)=k$, the characteristic polynomial of T_{W} is $h(x)=(-1)^{k} g(x)$ by 2.10. Since $h(x) \mid f(x)$ by 2.9 and $h(T)(v)=(-1)^{k} g(T)(v)=0$, it follows that $f(T)(v)=0$. Thus $f(T)=0$.
2.12 Remark. Let $T: V \rightarrow V$ be a linear operator. $I=\{f(x) \in F[x]: f(T)=0\}$ is an ideal of $F[x]$ and hence a principal ideal generated by some polynomial of least degree in I. Note that if $a(x), b(x) \in F[x]$ and $\langle a(x)\rangle=\langle b(x)\rangle$, then $a(x)=c b(x)$ for some $0 \neq c \in F$. Thus there is only one monic polynomial of least degree in I, i.e., only one monic $m(x)$ such that $I=\langle m(x)\rangle$.
2.13 Definition. We call the polynomial $m(x)$ from 2.12 the minimal polynomial for T.
2.14 Remark. Suppose $f(x) \in F[x]$ such that $f(T)=0$. Then $m(x) \mid f(x)$. In particular, $m(x)$ divides the characteristic polynomial of T by the Cayley-Hamilton Theorem.
2.15 Remark. We similarly define the minimal polynomial of $A \in M_{n}(F)$ to be the unique monic $m(x)$ of least degree such that $m(A)=0$.
2.16 Proposition. Let $T: V \rightarrow V$ be a linear operator with minimal polynomial $m(x)$ and characteristic polynomial $f(x)$. Then $m(x)$ and $f(x)$ have the same roots in F.

Proof. First note that since $m(x) \mid f(x)$, every root of $m(x)$ is a root of $f(x)$. If T has no eigenvalues, then $f(x)$ is irreducible, and thus $f(x)=(-1)^{k} m(x)$, and obviously every root of $f(x)$ is a root of $m(x)$. Otherwise, let λ be an eigenvalue of T. We claim that $m(\lambda)=0$.

Let $0 \neq v \in V$ be an eigenvector for λ. Then $m(\lambda) v=m(\lambda v)=m(T(v))=m(T)(v)=0(v)=0$. Since $v \neq 0$, it follows that $m(\lambda)=0$. Thus every root of $f(x)$ is a root of $m(x)$, and we're done.
2.17 Example. Let $V=P_{2}(\mathbb{R})=\{f(x) \in \mathbb{R}[x]: \operatorname{deg} f(x) \leq 2\}$. Consider $T: V \rightarrow V, T(g(x))=$ $g^{\prime}(x)+2 g(x)$. Let $\beta=\left\{1, x, x^{2}\right\}$ be a basis for V. Then $T(1)=2, T(x)=1+2 x$, and $T\left(x^{2}\right)=2 x+2 x^{2}$, so

$$
A=[T]_{\beta}=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

Thus the characteristic polynomial of T is $-(x-2)^{3}$. The minimal polynomial $m(x)$ of T must be $x-2$, $(x-2)^{2}$, or $(x-2)^{3}$. Note that $A-2 I \neq 0$, and

$$
(A-2 I)^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]^{2}=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \neq 0
$$

so $m(x)=(x-2)^{3}$.
2.18 Example. Let

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
0 & 2 & 0 \\
1 & -1 & 2
\end{array}\right]
$$

Then the characteristic polynomial of A is

$$
\operatorname{det}(A-x I)=\left|\begin{array}{cc|c}
3-x & -1 & 0 \\
0 & 2-x & 0 \\
\hline 1 & -1 & 2-x
\end{array}\right|=(3-x)(2-x)^{2}=-(x-3)(x-2)^{2} .
$$

So $m(x)=(x-3)(x-2)^{2}$ or $(x-3)(x-2)$. But

$$
(A-3 I)(A-2 I)=\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & -1 & 0 \\
1 & -1 & -1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $m(x)=(x-3)(x-2)$.
2.19 Definition. Let $T: V \rightarrow V$ be a linear operator. We say that V is T-cyclic if there exists $0 \neq v \in V$ such that $V=W_{T, v}$.
2.20 Proposition. Let $T: V \rightarrow V$ be a linear operator. If $\operatorname{dim} V=n$ and V is T-cyclic, then the characteristic polynomial $f(x)$ and the minimal polynomial $m(x)$ for T have the same degree. In particular, $f(x)=(-1)^{n} m(x)$.

Proof. Suppose $V=W_{T, v}$ for some $0 \neq v \in V$. Recall that $\left\{v, T(v), \ldots, T^{n-1}(v)\right\}$ is a basis for V. Let $g(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in F[x]$ with $a_{k} \neq 0$ and $k<n$. Since $\left\{v, T(v), \ldots, T^{k}(v)\right\}$ is linearly independent, $a_{0} v+a_{1} T(v)+\cdots+a_{k} T^{k}(v) \neq 0$, i.e., $g(T)(v) \neq 0$. Therefore $g(T) \neq 0$, and hence $\operatorname{deg} m(x) \geq n$. But $m(x) \mid f(x)$, so $\operatorname{deg} m(x)=n$, and since $m(x)$ is monic, $f(x)=(-1)^{n} m(x)$.
2.21 Theorem. Let $T: V \rightarrow V$ be a linear operator. Then T is diagonalizable if and only if the minimal polynomial $m(x)$ of T is of the form $m(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{k}\right)$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in F$ are the distinct eigenvalues of T.

Proof. (\Rightarrow) Suppose T is diagonalizable. Then let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of eigenvectors of T for V. Let $p(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{k}\right)$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T. We claim that $m(x)=p(x)$.

Since each eigenvalue is a root of the minimal polynomial of $T, p(x) \mid m(x)$. Choose $v_{i} \in \beta$. Then $T\left(v_{i}\right)=$ $\lambda_{j} v_{i}$ for some $1 \leq j \leq k$. In particular, $\left(T-\lambda_{j} I\right)\left(v_{i}\right)=0$. But then since $x-\lambda_{j} \mid p(x), p(x)=q_{j}(x)\left(x-\lambda_{j}\right)$, where $q_{j}(x) \in F[x]$. Then $p(T)\left(v_{i}\right)=q_{j}(T)\left(T-\lambda_{j} I\right)\left(v_{i}\right)=q_{j}(T)(0)=0$. Since $v_{i} \in \beta$ was arbitrary, $p(T)=0$. Therefore $m(x) \mid p(x)$. Since $p(x)$ is monic, $m(x)=p(x)$.
(\Leftarrow) Suppose $m(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{k}\right)$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T. We proceed by induction on $n=\operatorname{dim} V$.

If $n=1$, then T is clearly diagonalizable. If $n>1$, assume the result for all vector spaces over F with dimension less than n. Let $W=\operatorname{Range}\left(T-\lambda_{k} I\right)$. Now $E_{\lambda_{k}}=\operatorname{Null}\left(T-\lambda_{k} I\right) \neq\{0\}$, so $\operatorname{dim} W<n$ by the Rank-Nullity Theorem. Moreover, since T commutes with both itself and $\lambda I, W$ is T-invariant.

Consider $T_{W}: W \rightarrow W$. Since the minimal polynomial for T_{W} divides $m(x), T_{W}$ is diagonalizable by assumption. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be a basis for W of eigenvectors of T_{W}. Let $\gamma=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$ be a basis for $\operatorname{Null}\left(T-\lambda_{k} I\right)=E_{\lambda_{k}}$.

By the Rank-Nullity Theorem, $\operatorname{dim} V=n=m+\ell$. Let $y \in W$. Then $y=\left(T-\lambda_{k}\right)(x)$ for some $x \in V$. Then $m(T)(x)=\left(T-\lambda_{1} I\right)\left(T-\lambda_{2} I\right)\left(T-\lambda_{k-1} I\right)(y)=0$. Therefore, $\left(T_{W}-\lambda_{1} I\right)\left(T_{W}-\lambda_{2} I\right) \cdots\left(T_{W}-\lambda_{k-1} I\right)=$ 0 , so the minimal polynomial for T_{W} divides $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{k-1}\right)$. Hence λ_{k} is not an eigenvalue of T_{W}. Therefore, $W \cap E_{\lambda_{k}}=\varnothing$, and in particular $W \cap \gamma=\varnothing$. Thus $\beta \cup \gamma$ is linearly independent, and hence $\beta \cup \gamma$ is a basis of eigenvectors of T for V. Thus T is diagonalizable.
2.22 Example. Let $A \in M_{n}(\mathbb{C})$ such that $A^{m}=I$. Then $m(x) \mid x^{m}-1$. But $x^{m}-1$ has m distinct roots $1, \zeta_{m}, \zeta_{m}^{2}, \ldots, \zeta_{m}^{m-1}$, where $\zeta^{m}=e^{2 \pi i / m}$, so $m(x)$ splits over \mathbb{C} and has distinct roots over \mathbb{C}. By $2.21, A$ is diagonalizable.

3 Jordan Canonical Form

3.1 Generalized Eigenvectors and Eigenspaces

3.1.1 Notation. In keeping with 2.1, throughout this section, F is a field and V is a finite-dimensional vector space over F, unless otherwise stated.

3.1.2 Definition.

(1) $A \in M_{n}(F)$ is a Jordan block if

$$
A=\left[\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right]
$$

(2) $J \in M_{n}(F)$ is a Jordan matrix if

$$
J=\left[\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{k}
\end{array}\right]
$$

where $A_{1}, A_{2}, \ldots, A_{k}$ are Jordan blocks.

3.1.3 Example.

$$
J=\left[\begin{array}{l|ll|lll}
2 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

is a Jordan matrix with Jordan blocks

$$
[2],\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right],\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

Say $[T]_{\beta}=J$, where $T: V \rightarrow V$ is a linear operator and $\beta=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ is a basis for V. Then we have

i	$T\left(v_{i}\right)$	$(T-2 I)\left(v_{i}\right)$	$(T-2 I)^{2}\left(v_{i}\right)$	$(T-3 I)\left(v_{i}\right)$	$(T-3 I)^{2}\left(v_{i}\right)$	$(T-3 I)^{3}\left(v_{i}\right)$
1	$2 v_{1}$	0	0	\star	\star	\star
2	$2 v_{2}$	0	0	\star	\star	\star
3	$v_{2}+2 v_{3}$	v_{2}	0	\star	\star	\star
4	$3 v_{4}$	\star	\star	0	0	0
5	$v_{4}+3 v_{5}$	\star	\star	v_{4}	0	0
6	$v_{5}+3 v_{6}$	\star	\star	v_{5}	v_{4}	0

3.1.4 Example. Suppose $T: V \rightarrow V$ is a linear operator such that for some basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$ we have:

i	1	2	3	4	5	6
$T\left(v_{i}\right)$	$5 v_{1}$	$3 v_{2}$	$v_{2}+3 v_{3}$	$v_{3}+3 v_{4}$	$2 v_{5}$	$v_{5}+2 v_{6}$

Then

$$
A=[T]_{\beta}=\left[\begin{array}{c|ccc|cc}
5 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 3 & 1 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

Also note that $v_{1} \in E_{5}=\operatorname{Null}(A-5 I), v_{2} \in E_{3}=\operatorname{Null}(A-3 I), v_{3} \in \operatorname{Null}(A-3 I)^{2}, v_{4} \in N u l l(A-3 I)^{3}$, $v_{5} \in \operatorname{Null}(A-2 I), v_{6} \in \operatorname{Null}(A-2 I)^{2}$.
3.1.5 Definition. Let $T: V \rightarrow V$ be a linear operator whose characteristic polynomial splits over F. Let λ be an eigenvalue of T.
(1) We say that $0 \neq v \in V$ is a generalized eigenvector of T is $(T-\lambda I)^{p}(v)=0$ for some $p \in \mathbb{N}$.
(2) We define $K_{\lambda}:=\left\{k \in V: \exists p \in \mathbb{N},(T-\lambda I)^{p}(v)=0\right\}$ to be the generalzed eigenspace of V.
3.1.6 Remark. Equivalently, $K_{\lambda}=\bigcup_{i=1}^{\infty} \operatorname{Null}(T-\lambda I)^{i}$.
3.1.7 Proposition. Let $T: V \rightarrow V$ be a linear operator whose characteristic polynomial splits over F and λ an eigenvalue for T. Then K_{λ} is a T-invariant subspace which contains E_{λ}.

Proof. Assignment 4.
3.1.8 Proposition. Let $T: V \rightarrow V$ be a linear operator whose characteristic polynomial splits over F. Suppose $\lambda \neq \mu$ be eigenvalues for T. Then $T-\lambda I: K_{\mu} \rightarrow K_{\mu}$ is one-to-one. In particular, $K_{\lambda} \cap K_{\mu}=\{0\}$.

Proof. Let $0 \neq x \in K_{\mu}$, and suppose $x \in E_{\lambda}$. Let $p \in \mathbb{N}$ be minimal so that $(T-\mu I)^{p}(x)=0$. If $p=1$, $x \in E_{\mu}$, so $x \in E_{\mu} \cap E_{\lambda}=\{0\}$, and thus $x=0$, which is a contradiction.

If $p>1$, consider $y=(T-\mu I)^{p-1}(x) \neq 0$. Note that since $x \in E_{\lambda}$ and E_{λ} is $T-$ and λI-invariant, $y \in E_{\lambda}$. Then $(T-\mu I)(y)=(T-\mu I)^{p}(x)=0$, so $y \in E_{\mu}$. But since $y \in E_{\lambda} \cup E_{\mu}, y=0$, which is a contradiction. Therefore $\operatorname{Null}(T-\lambda I)=0$, so $T-\lambda I: K_{\mu} \rightarrow K_{\mu}$ is injective. It follows then that $(T-\lambda I)^{p}: K_{\mu} \rightarrow K_{\mu}$ is injective for all $p \in \mathbb{N}$. Thus $K_{\mu} \cap \operatorname{Null}(T-\lambda I)^{p}=\{0\}$ for all $p \in N$, i.e., $K_{\mu} \cap K_{\lambda}=0$.
3.1.9 Proposition. Let $T: V \rightarrow V$ be a linear operator whose characteristic polynomial splits over F. Suppose λ is an eigenvalue for T with multiplicity m. Then $\operatorname{dim} K_{\lambda} \leq m$ and $K_{\lambda}=\operatorname{Null}(T-\lambda I)^{m}$.

Proof. Let $W=K_{\lambda}$ and consider $T_{W}: W \rightarrow W$. Let $f(x)$ be the characteristic polynomial of T and $g(x)$ the characteristic polynomial of T_{W}. Recall that $g(x) \mid f(x)$. Also, if $\mu \neq \lambda$ is an eigenvalue of T, then $(T-\mu I): W \rightarrow W$ is injective, if $(T-\mu I)(v)=0$ for some $v \in W$, then $v=0$. Thus, the only eigenvalue of T_{W} is λ. Therefore $g(x)=(-1)^{d}(x-\lambda)^{d}$, where $d=\operatorname{dim} W$. Since $g(x) \mid f(x)$, $\operatorname{dim} W=d \leq m$.

It is clear that $W=K_{\lambda} \supseteq \operatorname{Null}(T-\lambda I)^{m}$. By the Cayley-Hamilton Theorem, $\left(T_{W}-\lambda I\right)^{d}=0$. Let $w \in W$. Then $\left(T_{W}-\lambda I\right)^{m}(w)=(T-\lambda I)^{m}(w)=(T-\lambda I)^{m-d}(T-\lambda I)^{d}(w)=(T-\lambda I)^{m-d}(0)=0$. Hence $W \subseteq \operatorname{Null}(T-\lambda I)^{m}$, so we're done.
3.1.10 Proposition. Let $T: V \rightarrow V$ be a linear operator whose characteristic polynomial splits over F. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. For all $x \in V$, there exist $v_{1} \in K_{\lambda_{1}}, v_{2} \in K_{\lambda_{2}}, \ldots v_{k} \in K_{\lambda_{k}}$ such that $x=v_{1}+v_{2}+\cdots+v_{k}$.

Proof. By induction on k. Suppose $k=1$ and $\lambda=\lambda_{1}$. Then the characteristic polynomial for T is $(-1)^{d}(x-\lambda)^{d}$, where $d=\operatorname{dim} V$. By the Cayley-Hamilton Theorem, $(T-\lambda I)^{d}=0$. Thus $K_{\lambda}=V$, and the result follows: take $x=x$.

Inductively, assume the result for operators with fewer than k eigenvalues. Let m be the multiplicity of λ_{k} and let $W=$ Range $\left(T-\lambda_{k} I\right)^{m}$. Note that W is T-invariant. Recall that for $i<k,\left(T-\lambda_{k}\right): K_{\lambda_{i}} \rightarrow K_{\lambda_{i}}$ is injective, so $\left(T-\lambda_{k}\right)^{m}: K_{\lambda_{i}} \rightarrow K_{\lambda_{i}}$ is injective. In particular, $\left(T-\lambda_{k} I\right)^{m}\left(K_{\lambda_{i}}\right) \subseteq K_{\lambda_{i}}$. But $\operatorname{dim} K_{\lambda_{i}}<\infty$, so $\left(T-\lambda_{k} I\right)^{m}: K_{\lambda_{i}} \rightarrow K_{\lambda_{i}}$ is also surjective by the Rank-Nullity Theorem. Thus $\left(T-\lambda_{k} I\right)^{m}\left(K_{\lambda_{i}}\right)=K_{\lambda_{i}}$, so $K_{\lambda_{i}} \subseteq W=\operatorname{Range}\left(T-\lambda_{k} I\right)^{m}$. Thus $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}$ are eigenvalues of $T_{W}: W \rightarrow W$. By the argument in the second half of 2.21 , it follows that λ_{k} is not an eigenvalue of T_{W}. Let $x \in V$. By assumption, we know that $\left(T-\lambda_{k}\right)^{m}(x)=w_{1}+w_{2}+\cdots+w_{k-1}$, where $w_{i} \in K_{\lambda_{i}}$. Since $\left(T-\lambda_{k} I\right)^{m}$ is onto, for every w_{i} there exists $v_{i} \in K_{\lambda_{i}}$ such that $\left(T-\lambda_{k} I\right)^{m}\left(v_{i}\right)=w_{i}$. Then

$$
\left(T-\lambda_{k} I\right)^{m}(x)=\left(T-\lambda_{k} I\right)^{m}\left(v_{1}\right)+\cdots+\left(T-\lambda_{k} I\right)^{m}\left(v_{k-1}\right),
$$

so

$$
\left(T-\lambda_{k} I\right)^{m}\left(x-v_{1}-v_{2}-\cdots-v_{k-1}\right)=0
$$

implying that $x-v_{1}-v_{2}-\cdots-v_{k-1} \in \operatorname{Null}\left(T-\lambda_{k} I\right)^{m}$. Thus $x=v_{1}+v_{2}+\cdots+v_{k-1}+v_{k}$ for some $v_{k} \in \operatorname{Null}\left(T-\lambda_{k} I\right)^{m}=K_{\lambda_{k}}$. This completes the proof.
3.1.11 Theorem. Let $T: V \rightarrow V$ be a linear operator whose characteristic polynomial splits over F. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues for T with multiplicities $m_{1}, m_{2}, \ldots, m_{k}$ respectively. For each $1 \leq i \leq$ k, let β_{i} be a basis for $K_{\lambda_{i}}$. Then
(1) $\beta_{i} \cap \beta_{j}=\varnothing$ when $i \neq j$.
(2) $\beta:=\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{k}$ is a basis for V.
(3) $\operatorname{dim} K_{\lambda_{i}}=m_{i}$.

Proof.
(1) $K_{\lambda_{i}} \cup K_{\lambda_{j}}=\{0\}$ when $i \neq j$ by 3.1.8, and thus $\beta_{i} \cap \beta_{j}=\varnothing$.
(2) $\mathrm{By}(1), \beta$ is linearly independent. Also, β spans V by 3.1.10. Thus β is a basis for β.
(3) $\operatorname{dim} V=|\beta|=\left|\beta_{1}\right|+\left|\beta_{2}\right|+\cdots+\left|\beta_{k}\right| \leq m_{1}+m_{2}+\cdots+m_{k}=\operatorname{dim} V$, and thus $m_{i}=\left|\beta_{i}\right|=\operatorname{dim} K_{\lambda_{i}}$ for all $1 \leq i \leq k$.

3.2 Finding the Jordan Canonical Form of a Matrix

3.2.1 Algorithm. Let $T: V \rightarrow V$ be a linear operator with characteristic polynomial

$$
f(x)=(-1)^{n} \prod_{i=1}^{k}\left(x-\lambda_{i}\right)^{m_{1}}
$$

(1) Let $A=[T]_{\sigma}$, where σ is the standard basis for V, and let J be a Jordan matrix which is similar to A.
(2) $\operatorname{Fix} \lambda=\lambda_{1}$. Compute $d_{1}:=\operatorname{dim} \operatorname{Null}(A-\lambda I)=\operatorname{dim} E_{\lambda}$. Say a basis for $\operatorname{Null}(A-\lambda I)$ is γ_{1}. Since we use γ_{1} to make the first columns of the λ-Jordan blocks, d_{1} is the number of λ-Jordan blocks in J.
(3) Compute $d_{2}:=\operatorname{dim} \operatorname{Null}(A-\lambda I)^{2}$. We then extend γ_{1} to a basis γ_{2} for $\operatorname{Null}(A-\lambda I)^{2}$ by solving $(A-\lambda I) x=v$ for each $v \in \gamma_{1}$. Since we use $\gamma_{2} \backslash \gamma_{1}$ to make our second colums, $d_{2}-d_{1}$ is the number of λ-Jordan blocks of size at least 2×2.
(4) Compute $d_{3}=\operatorname{dim} \operatorname{Null}(A-\lambda I)^{3}$. Then $d_{3}-d_{2}$ is the number of λ-Jordan blocks of size at least 3×3.
(5) Continue in this fashion until $d_{\ell}=m_{1}=\operatorname{dim} K_{\lambda}$, and thus γ_{ℓ} is a basis for K_{λ}.
(6) Repeat for $\lambda_{2}, \ldots, \lambda_{k}$. If β_{i} is a basis for each $K_{\lambda_{i}}$, then $\beta=\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{k}$ is a basis for V.
(7) If the $\beta_{i} \mathrm{~s}$ are computed as above, then $[T]_{\beta}=J$, and $A=P J P^{-1}$, where $P=[I]_{\beta}^{\sigma}$ and J is a Jordan matrix.
3.2.2 Remark. Any J computed in this way is called "the" Jordan Canonical Form of T (or A). It is unique up to reordering of the Jordan blocks.
3.2.3 Example. Let

$$
A=\left[\begin{array}{ll}
3 & -2 \\
8 & -5
\end{array}\right]
$$

Then $f(x)=(x+1)^{2}$, so $\lambda=-1$. We have

$$
\operatorname{Null}(A-\lambda I)=\operatorname{Null}(A+I)=\operatorname{Null}\left(\left[\begin{array}{cc}
1 & -1 / 2 \\
0 & 0
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]\right)
$$

Thus $d_{1}=1$ and

$$
\gamma_{1}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
$$

We now know that

$$
J=\left[\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right]
$$

Solving

$$
(A+I) v=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

we get

$$
v=\left[\begin{array}{c}
1 / 4 \\
0
\end{array}\right]
$$

Thus

$$
\gamma_{2}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 / 4 \\
0
\end{array}\right]\right\}=\beta
$$

so

$$
P=[I]_{\beta}^{\sigma}=\left[\begin{array}{cc}
1 & 1 / 4 \\
2 & 0
\end{array}\right]
$$

3.2.4 Example. Let

$$
A=\left[\begin{array}{ccc}
3 & 1 & -2 \\
-1 & 0 & 5 \\
-1 & -1 & 4
\end{array}\right]
$$

Then $f(x)=-(x-3)(x-2)^{2}$, so $\lambda_{1}=3, \lambda_{2}=2, m_{1}=1$ and $m_{2}=2$.
$\lambda_{1}=3$: Then $1 \leq d_{1}=\operatorname{dim} \operatorname{Null}(A-3 I) \leq 1$, so $d_{1}=1$ and our Jordan block must be [3].
$\lambda_{2}=2$: Then $1 \leq d_{1}=\operatorname{dim} \operatorname{Null}(A-2 I) \leq 2$. Note that

$$
A-2 I=\left[\begin{array}{ccc}
1 & 1 & -2 \\
-1 & -2 & 5 \\
-1 & -1 & 2
\end{array}\right]
$$

so inspecting the rows of $A-2 I$ shows that $\operatorname{rank}(A-2 I)=2$ and hence $d_{1}=1$. Thus our Jordan block must be

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

and

$$
J=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

3.2.5 Example. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}), T(f(x))=2 f(x)-f^{\prime}(x)$. Then $\sigma=\left\{x^{2}, x, 1\right\}$. Find a Jordan Canonical basis for T, i.e., a basis β such that $[T]_{\beta}=J$.

$$
[T]_{\sigma}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-2 & 2 & 0 \\
0 & -1 & 2
\end{array}\right]
$$

so $f(x)=-(x-2)^{3}$. Note that $(T-2 I)(f(x))=0 \Longleftrightarrow 2 f(x)-f^{\prime}(x)-2 f(x)=0 \Longleftrightarrow-f^{\prime}(x)=0$, so a basis for $\operatorname{Null}(T-2 I)$ is $\{1\}=\left\{v_{1}\right\}$ and hence $d_{1}=1$. So we must have

$$
J=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Similarly, $(T-2 I)(f(x))=1 \Longleftrightarrow-f^{\prime}(x)=1$, so we can take $v_{2}=-x$. Finally, $(T-2 I)(f(x))=-x \Longleftrightarrow$ $-f^{\prime}(x)=-x$, so we can take $v_{3}=\frac{1}{2} x^{2}$. Thus $\left(v_{1}, v_{2}, v_{3}\right)=\left(1,-x, \frac{1}{2} x^{2}\right)$ is a Jordan Canonical basis for T. Then $[T]_{\sigma}=P[T]_{\beta} P^{-1}$, where

$$
P=\left[\begin{array}{ccc}
0 & 0 & 1 / 2 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

3.2.6 Example. Let $T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$, where

$$
T(A)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] A
$$

Then

$$
\begin{gathered}
\sigma=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} . \\
{[T]_{\sigma}=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

so $f(x)=(x-1)^{4}$. Then with $\lambda=1, d_{1}=\operatorname{dim} \operatorname{Null}(A-I)=4-\operatorname{rank}(A-I)=2$, so we must have 2 Jordan blocks. Also, $d_{2}=\operatorname{dim} \operatorname{Null}(A-I)^{2}=\operatorname{dim} \operatorname{Null}(0)=4$, so $d_{2}-d_{1}=4-2=2$, and thus both Jordan blocks must be 2×2. So,

$$
J=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3.2.7 Proposition. Let $T: V \rightarrow V$ be a linear operator with minimal polynomial

$$
m(x)=\prod_{i=1}^{k}\left(x-\lambda_{i}\right)^{m_{i}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T. Then m_{i} is the size of the largest λ_{i}-Jordan block in the Jordan Canonical Form of T.
Proof. Let $[T]_{\sigma}=A$. Then $A=P J P^{-1}$, where

$$
J=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{\ell}
\end{array}\right]
$$

where each J_{i} is a Jordan block corresponding to some eigenvalue for T. Then

$$
0=m(J)=\left[\begin{array}{llll}
m\left(J_{1}\right) & & & \\
& m\left(J_{2}\right) & & \\
& & \ddots & \\
& & & m\left(J_{\ell}\right)
\end{array}\right]
$$

so $M\left(J_{i}\right)=0$ for all i.
Fix λ_{i} and let J_{i} be a λ_{i}-Jordan block. For any $j \neq i$, $\operatorname{det}\left(J_{i}-\lambda_{j} I\right) \neq 0$, since $\lambda_{i}-\lambda_{j} \neq 0$. Thus

$$
0=m\left(J_{i}\right)=\left(J_{i}-\lambda_{i} I\right)^{m_{i}} \prod_{j \neq i}\left(J_{i}-\lambda_{j}\right)^{m_{j}}
$$

But since $\operatorname{det}\left(J_{i}-\lambda_{j} I\right) \neq 0$ for any $j \neq i, J_{i}-\lambda_{j} I$ is invertible for each $j \neq i$. Thus we must have $\left(J_{i}-\lambda_{i} I\right)^{m_{i}}=0$. But then

$$
\left[\begin{array}{cccccc}
0 & 1 & & & & \\
& & 0 & 1 & & \\
& & & \ddots & \ddots & \\
& & & & 0 & 1 \\
& & & & & 0
\end{array}\right]^{m_{i}}=0
$$

Note that if $J_{i}-\lambda I$ is $p \times p$, then $\left(J_{i}-\lambda_{i}\right)^{p}=0$. By the minimality of $m(x), m_{i}$ must be the size of the largest λ_{i}-Jordan block.

4 Inner Product Spaces

4.1 Foundations

4.1.1 Convention. Throughout Section 4 , we shall use F to denote either \mathbb{R} or \mathbb{C}, and V to denote a (possibly infinite-dimensional) vector space over F.
4.1.2 Definition. An inner product on a vector space V is a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow F$ such that for all $x, y, z \in V, \alpha \in F$,
(1) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
(2) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$
(3) $\langle y, x\rangle=\overline{\langle x, y\rangle}$
(4) $\langle x, x\rangle \in \mathbb{R},\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0 \Longleftrightarrow x=0$.
4.1.3 Remark. The following are immediate from the definition of inner product:
(1) $\langle x, x\rangle=\overline{\langle x, x\rangle}$, so $\langle x, x\rangle \in \mathbb{R}$
(2) $\langle x, y+z\rangle=\overline{\langle y+z, x\rangle}=\overline{\langle y, x\rangle+\langle z, x\rangle}=\overline{\langle y, x\rangle}+\overline{\langle z, x\rangle}=\langle x, y\rangle+\langle x, z\rangle$
(3) $\langle x, \alpha y\rangle=\overline{\langle\alpha y, x\rangle}=\overline{\alpha\langle y, x\rangle}=\bar{\alpha}\langle x, y\rangle$
(4) $\langle x, 0\rangle=\overline{0}\langle x, 0\rangle=0$
(5) $\langle 0, x\rangle=0\langle 0, x\rangle=0$.
4.1.4 Definition. If V is equipped with an inner product, we call V an inner product space.
4.1.5 Proposition. Let V be an inner product space. If $y, z \in V$ and for all $x \in V,\langle x, y\rangle=\langle x, z\rangle$ then $y=z$. In particular, if $\langle x, y\rangle=0$ for all $x \in V$, then $y=0$.

Proof. Suppose $y, z \in V$ satisfy the condition in the proposition statement. Then for all $x \in V$,

$$
\langle x, y\rangle=\langle x, z\rangle \Longrightarrow\langle x, y\rangle-\langle x, z\rangle=0 \Longrightarrow\langle x, y-z\rangle=0 .
$$

In particular, $\langle y-z, y-z\rangle=0$, which implies that $y-z=0$, i.e., $y=z$.
4.1.6 Example. Let $V=F^{n}$. The standard inner product, or dot product is given by

$$
v \cdot w:=\langle v, w\rangle=\sum_{i=1}^{n} v_{i} \overline{w_{i}}
$$

for any vectors $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ in F^{n}. Additionally, any real scalar multiple of the dot product also forms an inner product on F^{n}, e.g., $\langle v, w\rangle^{\prime}=2\langle v, w\rangle$.
4.1.7 Example. Let $V=\mathcal{C}[a, b]$. An inner product on V is given by

$$
\langle f, g\rangle=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x
$$

4.1.8 Definition. Let $A=\left(a_{i j}\right) \in M_{n}(F)$. The adjoint (or conjugate transpose) of A is $A^{*} \in M_{n}(F)$ defined by $A^{*}=\left(\bar{a}_{j i}\right)$.

4.1.9 Example. If

$$
A=\left[\begin{array}{cc}
1-i & 2+i \\
i & 4
\end{array}\right]
$$

then

$$
A^{*}=\left[\begin{array}{cc}
1+i & -i \\
2-i & 4
\end{array}\right]
$$

4.1.10 Example. Let $V=M_{n}(F)$. The Frobenius inner product is defined by

$$
\langle A, b\rangle=\operatorname{tr}\left(B^{*} A\right)
$$

Note that if $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, then $\left(B^{*} A\right)_{j j}=\sum_{i=1}^{n} \overline{b_{i j}} a_{i j}$. Therefore

$$
\operatorname{tr}\left(B^{*} A\right)=\sum_{j=1}^{n} \sum_{i=1}^{n} \overline{b_{i j}} a_{i j}=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} \overline{b_{i j}}=v \cdot w
$$

where

$$
\begin{aligned}
v & =\left(a_{11}, a_{12}, \ldots, a_{1 n}, a_{21}, a_{22}, \ldots, a_{2 n}, \ldots, a_{n 1}, a_{n 2}, \ldots, a_{n n}\right) \\
w & =\left(b_{11}, b_{12}, \ldots, b_{1 n}, b_{21}, b_{22}, \ldots, b_{2 n}, \ldots, b_{n 1}, b_{n 2}, \ldots, b_{n n}\right)
\end{aligned}
$$

4.1.11 Example. Let $V=\ell^{2}(F):=\left\{\left(x_{n}\right)_{n=1}^{\infty} \in F^{\mathbb{N}}: \sum_{i=1}^{\infty}\left|x_{i}\right|^{2}<\infty\right\}$. An inner product on V is given by

$$
\left\langle\left(x_{n}\right),\left(y_{n}\right)\right\rangle=\sum_{i=1}^{\infty} x_{i} \overline{y_{i}}
$$

4.1.12 Definition. A norm on a vector space V is a map $\|\cdot\|: V \rightarrow \mathbb{R}$ such that for all $v, w \in V, \alpha \in F$
(1) $\|v\| \geq 0$ and $\|v\|=0 \Longleftrightarrow v=0$
(2) $\|\alpha v\|=|\alpha| \cdot\|v\|$
(3) $\|v+w\| \leq\|v\|+\|w\|$.

If V is equipped with a norm, we call it a normed vector space.
4.1.13 Theorem (Cauchy-Schwarz Inequality). Let V be an inner product space, and for $x \in V$, define $\|x\|=\sqrt{\langle x, x\rangle}$. Then for all $x, y \in V,|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.

Proof. Let $x, y \in V$. If $y=0$, the result is trivial. Otherwise, $\langle y, y\rangle>0$. Then for any $\alpha \in F$,

$$
0 \leq\|x-\alpha y\|^{2}=\langle x-\alpha y, x-\alpha y\rangle=\langle x, x\rangle-\bar{\alpha}\langle x, y\rangle-\alpha\langle y, x\rangle+\alpha \bar{\alpha}\langle y, y\rangle
$$

In particular, when $\alpha=\frac{\langle x, y\rangle}{\langle y, y\rangle}$,

$$
0 \leq\langle x, x\rangle-\frac{\langle y, x\rangle}{\langle y, y\rangle}\langle x, y\rangle-\frac{\langle x, y\rangle}{\langle y, y\rangle}\langle y, x\rangle+\frac{\langle x, y\rangle}{\langle y, y\rangle} \cdot \frac{\langle y, x\rangle}{\langle y, y\rangle}\langle y, y\rangle=\langle x, x\rangle-\frac{\langle x, y\rangle\langle y, x\rangle}{\langle y, y\rangle}
$$

It follows that $\langle x, x\rangle\langle y, y\rangle \geq\langle x, y\rangle \overline{\langle x, y\rangle}$, i.e., $\|x\|^{2}\|y\|^{2} \geq|\langle x, y\rangle|^{2}$. Therefore $\|x\|\|y\| \geq|\langle x, y\rangle|$.
4.1.14 Proposition. Let V be an inner product space. Then setting $\|x\|=\sqrt{\langle x, x\rangle}$ for all $x \in V$ defines a norm on V.

Proof. We will show that this choice of norm satisfies all the necessary properties. Let $x, y \in V, \alpha \in F$.
(1) $\|x\|=\sqrt{\langle x, x\rangle} \geq 0$, with $\|x\|=\sqrt{\langle x, x\rangle}=0 \Longleftrightarrow x=0$.
(2) $\|\alpha x\|=\sqrt{\langle\alpha x, \alpha x\rangle}=\sqrt{|\alpha|^{2}\langle x, x\rangle}=|\alpha|\|x\|$.
(3) This one requires a little more work and the Cauchy-Schwarz inequality:

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle \\
& =\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle} \\
& =\|x\|^{2}+\|y\|^{2}+2 \Re(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|x\|^{2}+\|y\|^{2}+2|\langle x, y\rangle| \\
& \leq\|x\|^{2}+\|y\|^{2}+2\|x\| \cdot\|y\| \\
& =(\|x\|+\|y\|)^{2}
\end{aligned}
$$

so $\|x+y\| \leq\|x\|+\|y\|$.
This completes the proof.
4.1.15 Example. Let $v=(-1, i, 2+i) \in \mathbb{C}^{3}$. Then

$$
\|v\|=\sqrt{(-1, i, 2+i) \cdot(-1, i, 2+i)}=\sqrt{1+(i)(-i)+(2+i)(2-i)}=\sqrt{2+5}=\sqrt{7}
$$

4.1.16 Example. Let

$$
v=\left[\begin{array}{cc}
-1 & 3-i \\
4 & 1
\end{array}\right] \in M_{2}(\mathbb{C})
$$

Using the norm induced by the Frobenius inner product,

$$
\|v\|=\sqrt{\operatorname{tr}\left(\left[\begin{array}{cc}
-1 & 4 \\
3+i & -i
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & 3-i \\
4 & 1
\end{array}\right]\right)}=\sqrt{17+11}=\sqrt{28}=2 \sqrt{7}
$$

4.1.17 Example. Let $f(x)=e^{x} \in \mathcal{C}[0,1]$. Then

$$
\|f(x)\|=\sqrt{\int_{0}^{1} e^{2 x} d x}=\sqrt{\frac{1}{2}\left(e^{2}-1\right)}
$$

4.2 Orthogonality and Orthonormality

4.2.1 Proposition (Parallelogram Law). Let V be an inner product space. Then for all $x, y \in V$,

$$
\|x+y\|^{2}+\|x-y\|^{2}=2 \cdot\|x\|^{2}+2\|y\|^{2}
$$

Proof. Let $x, y \in V$. Then

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle+\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =2\langle x, x\rangle+2\langle y, y\rangle \\
& =2\|x\|^{2}+2\|y\|^{2}
\end{aligned}
$$

as required.
4.2.2 Remark. We now begin to translate our geometric intuition into the language of norms and inner products. The previous proposition is a generalization of the parallelogram law in Euclidean geometry, which states that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Consider the Cosine Law in classical geometry: $c^{2}=a^{2}+b^{2}-2 a b \cos C$. In \mathbb{R}^{2}, this translates to

$$
\begin{aligned}
\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\|x\| y \cos \theta & \Longrightarrow\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle=\|x\|^{2}+\|y\|^{2}-2\|x\|\|y\| \cos \theta \\
& \Longrightarrow-2\langle x, y\rangle=2\|x\| y \| \cos \theta \\
& \Longrightarrow \cos \theta=\frac{\langle x, y\rangle}{\|x\|\|y\|}
\end{aligned}
$$

(Note that we assume $x, y \neq 0$; we want a triangle, after all.) Thus x, y are perpendicular if and only if $\cos \theta=0$, i.e., $\langle x, y\rangle=0$. This gives us a generalization of the notion of "perpendicular" to abstract inner product spaces.
4.2.3 Definition. Let V be an inner product space. We say $u, v \in V$ are orthogonal if $\langle u, v\rangle=0$. We say a subset $S \subseteq V$ is orthogonal if $\langle u, v\rangle=0$ for all $u, v \in S$. If S is orthogonal and $\|u\|=1$ for all $u \in S$, then we say S is orthonormal.
4.2.4 Example. The standard basis for $F^{n}, \sigma=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, is orthonormal.
4.2.5 Example. When considered as a subset of $\mathcal{C}[0,1], S=\left\{1, x, x^{2}\right\}$ is not orthogonal. However, when S is considered as a subset of $P_{2}(\mathbb{R}) \cong \mathbb{R}^{3}, S$ is orthonormal.
4.2.6 Remark. Let V be an inner product space. Suppose $S=\left\{v_{1}, v_{2}, v_{3}, \ldots,\right\} \subseteq V \backslash\{0\}$ is orthogonal. Then $S^{\prime}=\left\{\frac{1}{\left\|v_{1}\right\|} v_{1}, \frac{1}{\left\|v_{2}\right\|} v_{2}, \frac{1}{\left\|v_{3}\right\|} v_{3}, \ldots,\right\}$ is orthonormal.
4.2.7 Example. Let H be the collection of continuous functions from $[0,2 \pi]$ to \mathbb{C}. Then

$$
\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t
$$

is an inner product on H. Note that if $f(x) \in H$, then $f(x)=u(x)+i v(x)$, where $u, v \in \mathcal{C}[0,2 \pi]$, and $\int f(t) d t:=\int u(t) d t+i \int v(t) d t$.

Let $f_{n}(t)=e^{i n t}=\cos (n t)+i \sin (n t)$, and let $S=\left\{f_{n}: n \in \mathbb{Z}\right\}$. Then S is orthonormal.
4.2.8 Proposition. Let V be an inner product space, and let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V$ be orthogonal such that $v_{i} \neq 0$ for all $1 \leq i \leq k$. If $y \in \operatorname{Span}(S)$ such that $y=\sum_{i=1}^{k} c_{i} v_{i}$, where $c_{1}, c_{2}, \ldots, c_{k} \in F$, then for all $i \leq i \leq k$,

$$
c_{i}=\frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} .
$$

Proof. Let $y=\sum_{i=1}^{k} c_{i} v_{i} \in \operatorname{Span}(S)$. Then for each $1 \leq i \leq k$,

$$
\left\langle y, v_{i}\right\rangle=\left\langle\sum_{i=1}^{k} c_{i} v_{i}, v_{i}\right\rangle=c_{i}\left\langle v_{i}, v_{i}\right\rangle=c_{i}\left\|v_{i}\right\|^{2}
$$

and since $v_{i} \neq 0$, we must have

$$
c_{i}=\frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}
$$

as required.
4.2.9 Remark. In the above proposition, if S is in fact orthonormal, then $c_{i}=\left\langle y, v_{i}\right\rangle$.
4.2.10 Proposition. Let V be an inner product space, and let $S \subseteq V$ be orthogonal consisting of nonzero vectors. Then S is linearly independent.
Proof. Let $v_{1}, v_{2}, \ldots, v_{k} \in S$. Suppose $\sum_{i=1}^{k} c_{i} v_{i}=0$ for some $c_{1}, c_{2}, \ldots, c_{k} \in F$. By Proposition 4.2.8,

$$
c_{i}=\frac{\left\langle 0, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}=0
$$

for $1 \leq i \leq k$, so S is linearly independent.
4.2.11 Proposition. Let $A \in M_{n}(F)$. Suppose

$$
A=\left[\begin{array}{c}
\frac{r_{1}}{r_{2}} \\
\frac{\vdots}{r_{n}}
\end{array}\right],
$$

where $r_{1}, r_{2}, \ldots, r_{n} \in F^{n}$ and $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is orthogonal. Then $A A^{*}$ is diagonal. If $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is orthonormal, then $A A^{*}=I$.

Proof. Let $A A^{*}=\left(a_{i j}\right)$. Since

$$
A A^{*}=\left[\begin{array}{c}
\frac{r_{1}}{r_{2}} \\
\hline \frac{\vdots}{r_{n},}
\end{array}\right] \cdot\left[\overline{r_{1}}\left|\overline{r_{2}}\right| \cdots \mid \overline{r_{n}}\right]
$$

we see that

$$
a_{i j}=\left\langle r_{i}, r_{j}\right\rangle=\left\{\begin{array}{ll}
0 & i \neq j \\
\left\|r_{i}\right\|^{2} & i=j
\end{array},\right.
$$

so $A A^{*}$ is diagonal. In particular, if $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ is orthogonal, $\left\|r_{i}\right\|^{2}=1$, so $A A^{*}=I$.
4.2.12 Algorithm (Gram-Schmidt Procedure). Let V be an inner product space. Let $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq V$ be linearly independent. We wish to produce an orthogonal set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V$ such that

$$
\operatorname{Span}\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

We present a procedure for $n=3$; it is easy to see how it could be adapted for larger numbers.
(1) Take $v_{i}=w_{i}$.
(2) Note: $\operatorname{Span}\left\{w_{1}, w_{2}\right\}=\operatorname{Span}\left\{v_{1}, w_{2}\right\}=\operatorname{Span}\left\{v_{1}, w_{2}-\alpha v_{1}\right\}$ for any $\alpha \in F$. Solve for α so that

$$
0=\left\langle w_{2}-\alpha v_{1}, v_{1}\right\rangle \Longleftrightarrow 0=\left\langle w_{2}, v_{1}\right\rangle-\alpha\left\langle v_{1}, v_{1}\right\rangle \Longleftrightarrow \alpha=\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}
$$

(3) Take $v_{2}=w_{2}-\alpha v_{1}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}$.
(4) Note: $\operatorname{Span}\left\{w_{1}, w_{2}, w_{3}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, w_{3}\right\}=\operatorname{Span}\left\{v_{2}, v_{2}, w_{3}-\alpha v_{1}-\beta v_{2}\right\}$. Solve for α and β :

$$
\alpha=\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}, \beta=\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}}
$$

(5) Take $v_{3}=w_{3}-\alpha v_{1}-\beta v_{2}=w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}}$.
(6) Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is orthogonal with $\operatorname{Span}\left\{w_{1}, w_{2}, w_{3}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$, and $\left\{\frac{1}{\left\|v_{1}\right\|} v_{1}, \frac{1}{\left\|v_{2}\right\|} v_{2}, \frac{1}{\left\|v_{3}\right\|} v_{3}\right\}$ is orthonormal.
4.2.13 Theorem (Gram-Schmidt). Let V be an inner product space. If $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} \subseteq V$ is linearly independent, then $S^{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ defined recursively by

$$
v_{k}= \begin{cases}w_{1} & k=1 \\ w_{k}-\sum_{j=1}^{k-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j} & \text { otherwise }\end{cases}
$$

is an orthogonal set of nonzero vectors such that $\operatorname{Span}(S)=\operatorname{Span}\left(S^{1}\right)$.
Proof. Apply the Gram-Schmidt procedure.
4.2.14 Corollary. If V is a finite-dimensional inner product space, then V has an orthonormal basis.
4.2.15 Example. Let $W=\operatorname{Span}\left\{w_{1}=[1,1,0], w_{2}=[0,2,1]\right\} \subseteq \mathbb{R}^{3}$. Take $v_{1}=w_{1}=[1,1,0]$ and

$$
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Thus $\left\{\frac{1}{\sqrt{2}} v_{1}, \frac{1}{\sqrt{3}} v_{2}\right\}$ is an orthonormal basis for W.
4.2.16 Remark. Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V$ is orthogonal. Then

$$
\left\|v_{1}+v_{2}+\cdots+v_{n}\right\|^{2}=\left\langle v_{1}+v_{2}+\cdots+v_{n}, v_{1}+v_{2}+\cdots+v_{n}\right\rangle=\left\|v_{1}\right\|^{2}+\left\|v_{2}\right\|^{2}+\cdots+\left\|v_{n}\right\|^{2}
$$

4.2.17 Remark. Recall from high school linear algebra that in \mathbb{R}^{2}, the projection of \vec{v} onto \vec{w} is given by

$$
\operatorname{proj}_{\vec{v}} \vec{w}=\frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} .
$$

Geometrically, this explains the choice of α in the Gram-Schmidt procedure: setting $\alpha=\frac{\vec{w} \cdot \vec{v}}{\vec{v} \cdot \vec{v}}$ ensures that $\vec{w}-\alpha \vec{v}$ is perpendicular to \vec{v}.
4.2.18 Exercise. Find an orthogonal basis for $P_{2}(\mathbb{R}) \subseteq \mathcal{C}[0,1]$.

Solution. Let $\beta=\left\{w_{1}=1, w_{2}=x, w_{3}=x^{2}\right\}$ be the standard basis for $P_{2}(\mathbb{R})$. Take $v_{1}=w_{1}=1$. Then let

$$
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=x-\frac{\int_{0}^{1} x \cdot 1 d x}{\int_{0}^{1} 1 \cdot 1 d x} \cdot 1=x-\frac{1}{2} .
$$

Also, let

$$
v_{3}=w_{3}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\|v_{2}\right\|^{2}} v_{2}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1}=x^{2}-\frac{\int_{0}^{1} x^{3}-\frac{1}{2} x^{2} d x}{\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x}\left(x-\frac{1}{2}\right)-\frac{\int_{0}^{1} x^{2} d x}{\int_{0}^{1} 1 d x} \cdot 1=x^{2}-x+\frac{1}{6}
$$

This gives us the orthonormal basis $\left\{1, x-\frac{1}{2}, x^{2}-x+\frac{1}{6}\right\}$.
4.2.19 Exercise. A throwback to high school linear algebra: Find the closest point on $x=(1,2)+(1,-1) t$ to the point $(3,3)$.

Solution. Letting $\vec{v}=(1,-1)$ and $\vec{w}=(3,3)-(1,2)=(2,1)$, we have $\operatorname{proj}_{\vec{v}} \vec{w}=\frac{1}{2}(1,-1)=\left(\frac{1}{2},-\frac{1}{2}\right)$. This gives the closest point as $(1,2)+\left(\frac{1}{2},-\frac{1}{2}\right)=\left(\frac{3}{2}, \frac{3}{2}\right)$.
4.2.20 Remark. We want to generalize the notion of projection to abstract subspaces, not just lines.
4.2.21 Definition. Let A, B be subspaces of a vector space V. We say that V is a direct sum of A and B and write $V=A \oplus B$ if
(1) $A+B:=\{a+b: a \in A, b \in B\}=V$ and
(2) $A \cap B=\{0\}$.
4.2.22 Proposition. Suppose $V=A \oplus B$ for some $A, B \leq V$.
(1) Every $v \in V$ can be uniquely written as $v=a+b$, where $a \in A, b \in B$.
(2) If α is a basis for A and β is a basis for B, then $\alpha \cup \beta$ is a basis for V. In particular, if V is finite-dimensional, then $\operatorname{dim} V=\operatorname{dim} A+\operatorname{dim} B$.

Proof.
(1) Let $v \in V$. Since $V=A \oplus B$, there exist $a \in A, b \in B$ such that $v=a+b$; we just need to show uniqueness. Suppose v is also equal to $\tilde{a}+\tilde{b}$, where $\tilde{a} \in A$ and $\tilde{b} \in B$. Then $a+b=\tilde{a}+\tilde{b}$, so $A \ni a-\tilde{a}=\tilde{b}-b \in B$. Since $A \cap B=\{0\}, a-\tilde{a}=\tilde{b}-b=0$, i.e., $a=\tilde{a}$ and $b=\tilde{b}$.
(2) Let $\alpha=\left\{v_{1}, v_{2}, v_{3}, \ldots,\right\}$ and $\beta=\left\{w_{1}, w_{2}, w_{3}, \ldots,\right\}$ be bases for A and B respectively. Since $V=A+B$, $\alpha \cup \beta$ spans V. Now, suppose $\sum_{i=1}^{n} c_{i} v_{i}+\sum_{i=1}^{n} d_{i} w_{i}=0$ for some $c_{1}, c_{2}, \ldots, c_{n}, d_{1}, d_{2}, \ldots, d_{n} \in F$. Then

$$
A \ni \sum_{i=1}^{n} c_{i} v_{i}=-\sum_{i=1}^{m} d_{i} v_{i} \in B
$$

and since α and β are each linearly independent, we must have

$$
c_{1}=c_{2}=\cdots=c_{n}=0=d_{1}=d_{2}=\cdots=d_{m}
$$

Therefore $\alpha \cup \beta$ is linearly independent.

This completes the proof.
4.2.23 Definition. Let V be an inner product space, and let $\varnothing \neq S \subseteq V$. The orthogonal complement of S is defined to be

$$
S^{\perp}:=\{x \in V:\langle v, x\rangle=0 \text { for all } v \in S\} .
$$

4.2.24 Remark. For any $\varnothing \neq S \subseteq V, S^{\perp}$ is a subspace of V.
4.2.25 Theorem. If W is a finite-dimensional subspace of an inner product space V, then $V=W \oplus W^{\perp}$.

Proof. Let V be an inner product space and let $W \leq V$ be finite-dimensional. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthonormal basis for W. Let $u=\sum_{i=1}^{k}\left\langle v, v_{i}\right\rangle v_{i} \in W$. Let $z=v-u$. Now, for every $1 \leq j \leq k$,

$$
\left\langle z, v_{j}\right\rangle=\left\langle v-u, v_{j}\right\rangle=\left\langle v, v_{j}\right\rangle-\left\langle u, v_{j}\right\rangle=\left\langle v, v_{j}\right\rangle-\left\langle v, v_{j}\right\rangle\left\langle v_{j}, v_{j}\right\rangle=\left\langle v, v_{j}\right\rangle-\left\langle v, v_{j}\right\rangle=0
$$

It follows that $z \in W^{\perp}$. Since $v=u+z$ and $u \in W, v=u+z$. Therefore $V=W+W^{\perp}$. Now, if $x \in W \cap W^{\perp}$, then $\langle x, x\rangle=0$, so $x=0$. Therefore $W \oplus W^{\perp}=0$, and it follows that $V=W \oplus W^{\perp}$.
4.2.26 Definition. Let V be an inner product space and $W \leq V$ be finite-dimensional. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthonormal basis for W. For $v \in V$, we call

$$
u=\sum_{i=1}^{k}\left\langle v, v_{i}\right\rangle v_{i} \in W
$$

the orthogonal projection of v onto W, and we write $u=\operatorname{proj}_{W}(v)$. Note that this vector is unique.
4.2.27 Theorem. Let W be a finite-dimensional subspace of an inner product space V. Let $v \in V$, so that there exist unique $u \in W$ and $z \in W^{\perp}$ such that $v=u+z$. Then for any $x \in W,\|v-x\| \geq\|v-u\|$, with equality if and only if $x=u$.

Proof. Let $x \in W$. Note that $u-x \in W$ and $z \in W^{\perp}$, so

$$
\|v-x\|^{2}=\|u+z-x\|^{2}=\|u-x+z\|^{2}=\langle u-x+z, u-x+z\rangle=\|u-x\|^{2}+\|z\|^{2} \geq\|z\|^{2}
$$

so $\|v-x\| \geq\|z\|=\|v-u\|$. Equality holds if and only if $\|u-x\|^{2}=0$, i.e., $x=u$, so we're done.
4.2.28 Example. Let $W=\operatorname{Span}\{(i, 0,1+i),(0,-i, 1)\} \subseteq \mathbb{C}^{3}$. Note that $\operatorname{dim} W=2$, so $\operatorname{dim} W^{\perp}=1$. By inspection, we see that $(1-i, 1,-i) \in W^{\perp}$, so $W^{\perp}=\operatorname{Span}\{(1-i, 1,-i)\}$.
4.2.29 Exercise. Let $V=C[0,1]$ and let $W=P_{1}(\mathbb{R})$. Find the closest vector in W to $f(x)=e^{x} \in V$.

Solution. By Theorem 4.2.27, we must find $\operatorname{proj}_{W}(f(x))$. First, a basis for W is clearly $\{1, x\}$. Upon applying the Gram-Schmidt procedure to this basis, we see that $\left\{1, \sqrt{12}\left(x-\frac{1}{2}\right)\right\}$ is an orthonormal basis for W. Therefore,

$$
\begin{aligned}
\operatorname{proj}_{W}(f(x)) & =\left\langle e^{x}, 1\right\rangle+\left\langle e^{x}, \sqrt{12}\left(x-\frac{1}{2}\right)\right\rangle\left(\sqrt{12}\left(x-\frac{1}{2}\right)\right) \\
& =\int_{0}^{1} e^{x} d x+\left(\int_{0}^{1} e^{x}(\sqrt{12} x-\sqrt{3}) d x\right)(\sqrt{12} x-\sqrt{3}) \\
& =e-1+(e(\sqrt{12}-\sqrt{3})+\sqrt{3}-\sqrt{12}(e-1))(\sqrt{12} x-\sqrt{3}) \\
& =e-1+(3-e) \sqrt{3}(\sqrt{12} x-\sqrt{3}) \\
& =e-1+(3-e)(6 x-3) \\
& =(18-6 e) x+(4 e-10) .
\end{aligned}
$$

4.2.30 Exercise. Find the closest symmetric matrix to

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(\mathbb{R})
$$

Solution. Let $W=\left\{X \in M_{2}(\mathbb{R}): X=X^{T}\right\}$. Note that a basis for W is given by

$$
\gamma=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

Furthermore, by considering the Frobenius inner product we see that this is actually any orthogonal basis. If we use

$$
\beta=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

then we have an orthonormal basis. Say $\beta=\left\{v_{1}, v_{2}, v_{3}\right\}$. Then the closest symmetric matrix to A is

$$
\begin{aligned}
& \operatorname{proj}_{W}(A) \\
= & \left\langle A, v_{1}\right\rangle v_{1}+\left\langle A, v_{2}\right\rangle v_{2}+\left\langle A, v_{3}\right\rangle v_{3} \\
= & \operatorname{tr}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\operatorname{tr}\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right) \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\operatorname{tr}\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
= & {\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
0 & b+c \\
b+c & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
a & \frac{1}{2}(b+c) \\
\frac{1}{2}(b+c) & d
\end{array}\right] }
\end{aligned}
$$

which is what we might expect intuitively.

4.3 The Adjoint

4.3.1 Definition. Let V be a vector space over a field F. We say that $T: V \rightarrow F$ is a linear functional if T is linear. The dual space V^{*} of V is the vector space of linear functionals on V.
4.3.2 Theorem (Riesz Representation Theorem). Let V be a finite-dimensional inner product space. Let $T: V \rightarrow F$ be a linear functional. Then there exists a unique $y \in V$ such that $T(x)=\langle x, y\rangle$ for all $x \in V$.

Proof. Assignment 5.
4.3.3 Proposition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. Then there exists a unique linear operator $T^{*}: V \rightarrow V$ such that $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$ for all $x, y \in V$.

Proof. For arbitrary $y \in V, U_{y}: V \rightarrow F$ given by $U_{y}(x)=\langle T(x), y\rangle$ is a linear functional. By the Riesz Representation Theorem, there exists a unique $y^{\prime} \in V$ such that $U_{y}(x)=\left\langle x, y^{\prime}\right\rangle$ for all $x \in V$. Define $T^{*}: V \rightarrow V$ by $T^{*}(y)=y^{\prime}$.

It remains to show that T^{*} is linear. Let $x, y_{1}, y_{2} \in V, \alpha \in F$. Then

$$
\begin{aligned}
\left\langle x, T^{*}\left(\alpha y_{1}+y_{2}\right)\right\rangle & =\left\langle T(x), \alpha y_{1}+y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle T(x), y_{1}\right\rangle+\left\langle T(x), y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle x, T^{*}\left(y_{1}\right)\right\rangle+\left\langle x, T^{*}\left(y_{2}\right)\right\rangle \\
& =\left\langle x, \alpha T^{*}\left(y_{1}\right)\right\rangle+\left\langle x, T^{*}\left(y_{2}\right)\right\rangle \\
& =\left\langle x, \alpha T^{*}\left(y_{1}\right)+T^{*}\left(y_{2}\right)\right\rangle .
\end{aligned}
$$

Since x was arbitrary, $T^{*}\left(\alpha y_{1}+y_{2}\right)=\alpha T^{*}\left(y_{1}\right)+T^{*}\left(y_{2}\right)$, and thus T^{*} is linear, so we're done.
4.3.4 Definition. We call the function T^{*} constructed as in the proof of Proposition 4.3.3 the adjoint of T.
4.3.5 Proposition. Let V be a finite-dimsional inner product space. Let β be an orthonormal basis for V, and let $T: V \rightarrow V$ be linear. Then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$.
Proof. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $A=\left(a_{i j}\right)=[T]_{\beta}$. Let $B=\left(b_{i j}\right)=\left[T^{*}\right]_{\beta}$. Then by Proposition 4.2.8,

$$
b_{i j}=\left\langle T^{*}\left(v_{j}\right), v_{i}\right\rangle=\overline{\left\langle v_{i}, T^{*}\left(v_{j}\right)\right\rangle}=\overline{\left\langle T\left(v_{i}\right), v_{j}\right\rangle}=\overline{a_{j i}},
$$

so $A^{*}=B$, as required.
4.3.6 Remark. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. Then for all $x, y \in V,\left\langle T^{*}(x), y\right\rangle=\langle x, T(y)\rangle$.
4.3.7 Remark. Let $A \in M_{n}(F)$ and let σ be the standard (orthonormal) basis for F^{n}. Then $A=\left[L_{A}\right]_{\sigma}$, so

$$
A^{*}=\left[L_{A}\right]_{\sigma}^{*}=\left[L_{A}^{*}\right]_{\sigma}=\left[L_{A^{*}}\right]_{\sigma}
$$

and thus $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$.
4.1 Example. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be given by $T(f(x))=f^{\prime}(x)$. Take $\sigma\left\{x^{2}, x, 1\right\}$ to be an orthonormal basis for $P_{2}(\mathbb{R})$ under the dot product. Then

$$
[T]_{\sigma}=\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],
$$

so

$$
\left[T^{*}\right]_{\sigma}=[T]_{\sigma}^{*}=\left[\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $T^{*}\left(x^{2}\right)=0, T^{*}(x)=2 x^{2}$, and $T^{*}(1)=x$, so $T^{*}\left(a x^{2}+b x+c\right)=2 b x^{2}+c$.
4.3.8 Proposition. Let V be a finite-dimensional inner product space. Let $T, U: V \rightarrow V$ be linear, and let $\alpha \in F$. Then
(1) $(T+U)^{*}=T^{*}+U^{*}$
(2) $(\alpha T)^{*}=\bar{\alpha} T^{*}$
(3) $(T \circ U)^{*}=U^{*} \circ T^{*}$
(4) $\left(T^{*}\right)^{*}=T$
(5) $I^{*}=I$.

Proof. Let $x, y \in V$. Then
(1) $\langle(T+U)(x), y\rangle=\langle T(x), y\rangle+\langle U(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle+\left\langle x, U^{*}(y)\right\rangle=\left\langle x,\left(T^{*}+U^{*}\right)(y)\right.$
(2) $\langle(\alpha T)(x), y\rangle=\alpha\langle T(x), y\rangle=\alpha\left\langle x, T^{*}(y)\right\rangle=\langle x,(\bar{\alpha} T)(y)\rangle$
(3) $\langle(T \circ U)(x), y\rangle=\left\langle U(x), T^{*}(y)\right\rangle=\left\langle x,\left(U^{*} \circ T^{*}\right)(y)\right\rangle$
(4) $\left\langle\left(T^{*}\right)(x), y\right\rangle=\overline{\left\langle y,\left(T^{*}\right)(x)\right\rangle}=\overline{\langle T(y), x\rangle}=\langle x, T(y)\rangle$
(5) $\langle I(x), y\rangle=\langle x, y\rangle=\langle x, I(y)\rangle$,
and in each case the result follows by uniqueness of the adjoint.

4.4 Least Squares Approximation

4.4.1 Definition. Suppose we have real data points $y_{1}, y_{2}, \ldots, y_{m}$ observed at times $t_{1}, t_{2}, \ldots, t_{m}$, and we plot each $\left(t_{i}, y_{i}\right)$ in \mathbb{R}^{2}. Our goal is to find a line that best fits this data; i.e., to find the line so that the (vertical) distances between the points and said line is minimal. In fact, we will seek to minimize the squares of these vertical distances. Hence this line of best fit will also be called the least squares line.
4.2 Remark. We wish to find the line $y=c x+d$ that minimizes the error term minimize the error term $E=\sum_{i=1}^{n}\left(c t_{i}+d-y_{i}\right)^{2}$. Accordingly, we set

$$
A=\left[\begin{array}{cc}
t_{1} & 1 \\
t_{2} & 1 \\
\vdots & \vdots \\
t_{m} & 1
\end{array}\right] \quad x=\left[\begin{array}{c}
c \\
d
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

so that $E=\|A x-y\|^{2}$. Thus we must find x_{0} so that $\left\|A x_{0}-y\right\|$ is minimal.
4.4.2 Remark. We extend the definition of the adjoint to include any $A \in M_{m \times n}(F)$ by defining A^{*} to be the conjugate transpose of A, as in the $n \times n$ case.
4.4.3 Lemma. Let $A \in M_{m \times n}(F), x \in F^{n}$, and $y \in F^{m}$. Then $\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle$.

Proof. Note that $\langle A x, y\rangle=y^{*} A x=\left(A^{*} y\right)^{*} x=\left\langle x, A^{*} y\right\rangle$.
4.4.4 Lemma. Let $A \in M_{m \times n}(F)$. Then $\operatorname{rank}(A)=\operatorname{rank}\left(A^{*} A\right)$. In particular, if $\operatorname{rank} A=n$, then $A^{*} A$ is invertible.

Proof. We will show a stronger result, namely that $\operatorname{Null}(A)=\operatorname{Null}\left(A^{*} A\right)$. Clearly $\operatorname{Null}(A) \subseteq \operatorname{Null}\left(A^{*} A\right)$. Let $x \in \operatorname{Null}\left(A^{*} A\right)$. Then

$$
\|A x\|^{2}=\langle A x, A x\rangle=\left\langle x, A^{*} A x\right\rangle=\langle x, 0\rangle=0
$$

so $A x=0$, and thus $\operatorname{Null}\left(A^{*} A\right) \subseteq \operatorname{Null}(A)$. A fortiori, this completes the proof.
4.3 Remark. Recall that we want to minimize $\|A x-y\|$, where $A \in M_{m \times n}(F), x \in F^{n}, y \in F^{m}$. Let $W=\operatorname{Range}(A)$. Let $y_{0}=\operatorname{proj}_{W}(y) \in W$. Say $y_{0}=A x_{0}$ for some $x_{0} \in F^{n}$. Then $\left\|A x_{0}-y\right\|$ is minimal.

June 19
Now,

$$
\begin{aligned}
y-y_{0} \in W^{\perp} & \Longrightarrow y-A x_{0} \in W^{\perp} \\
& \Longrightarrow\left\langle A x, y-A x_{0}\right\rangle=0 \forall x \in F^{n} \\
& \Longrightarrow\left\langle x, A^{*}\left(y-A x_{0}\right)\right\rangle=0 \forall x \in F^{n} \\
& \Longrightarrow A^{*}\left(y-A x_{0}\right)=0 \\
& \Longrightarrow A^{*} y=A^{*} A x_{0} .
\end{aligned}
$$

If $\operatorname{rank} A=n$ (which it always is for our real world applications), $x_{0}=\left(A^{*} A\right)^{-1} A^{*} y$.
4.4 Example. In the last four Spring terms at Waterloo, the MATH 245 final exam averages have been $75,82,60$, and $70 .{ }^{1}$ To find the line of best fit for this data, we plot the points $(1,75),(2,82),(3,60)$, and $(4,70)$ and use the matrices

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1 \\
4 & 1
\end{array}\right] \quad y=\left[\begin{array}{c}
75 \\
82 \\
60 \\
70
\end{array}\right]
$$

This gives us

$$
A^{*}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right] \quad A^{*} A=\left[\begin{array}{cc}
30 & 10 \\
10 & 4
\end{array}\right] \quad\left(A^{*} A\right)^{-1}=\frac{1}{20}\left[\begin{array}{cc}
4 & -10 \\
-10 & 30
\end{array}\right]=\left[\begin{array}{cc}
1 / 5 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]
$$

[^0]Therefore

$$
x_{0}=\left(A^{*} A\right)^{-1} A^{*} y=\left[\begin{array}{cc}
1 / 5 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
75 \\
82 \\
60 \\
70
\end{array}\right]=\left[\begin{array}{cc}
1 / 5 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]\left[\begin{array}{c}
699 \\
287
\end{array}\right]=\left[\begin{array}{c}
-3.7 \\
81
\end{array}\right]
$$

which gives us the line of best fit $y=-3.7 x+81$.
4.5 Remark. We similarly can find the polynomial of best fit, $y=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{1} x+a_{0}$, by using the matrices

$$
A=\left[\begin{array}{ccccc}
t_{1}^{n} & t_{1}^{n-1} & \cdots & t_{1} & 1 \\
t_{2}^{n} & t_{2}^{n-1} & \cdots & t_{2} & 1 \\
\vdots & \vdots & \ldots & \vdots & \\
t_{m}^{n} & t_{m}^{n-1} & \cdots & t_{m} & 1
\end{array}\right] \quad x=\left[\begin{array}{c}
a_{n} \\
a_{n-1} \\
\vdots \\
a_{0}
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

4.5 Normal, Hermitian, and Unitary Operators

4.5.1 Remark. Note that for $A \in M_{n}(F)$, if the columns of A form an orthonormal basis for F^{n}, then $A^{*} A=I$, and thus $A^{-1}=A^{*}$.
4.5.2 Lemma. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. If T has an eigenvector, then T^{*} has an eigenvector.

Proof. Suppose there exists $0 \neq v \in V$ such that $T(v)=\lambda v$ for some $\lambda \in F$. Then

$$
\begin{aligned}
(T-\lambda I)(v)=0 & \Longrightarrow\langle(T-\lambda I)(v), x\rangle=0 \forall x \in V \\
& \Longrightarrow\left\langle v,(T-\lambda I)^{*}(x)\right\rangle=0 \forall x \in V \\
& \Longrightarrow\left\langle v,\left(T^{*}-\bar{\lambda} I\right)(x)\right\rangle=0 \forall x \in V
\end{aligned}
$$

Hence $0 \neq v \in \operatorname{Range}\left(T^{*}-\bar{\lambda} I\right)^{\perp}$, so Range $\left(T^{*}-\bar{\lambda} I\right) \neq V$. In particular, $\operatorname{Null}\left(T^{*}-\bar{\lambda} I\right) \neq\{0\}$, so T^{*} has a $\bar{\lambda}$ eigenvector.
4.5.3 Theorem (Schur). Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear such that the characteristic polynomial of T splits over F. Then there exists an orthonormal basis for V such that $[T]_{\beta}$ is upper triangular.

Proof. By induction on $n=\operatorname{dim} V$. If $n=1$, we're clearly done. Inductively, assume the result for all inner product spaces with dimension less than n. Suppose $\operatorname{dim} V=n$. Since the characteristic polynomial of T splits, T must have an eigenvector. By Lemma 4.5.2, so does T^{*}. Let an eigenvector for T^{*} be $0 \neq v$; then $T^{*}(v)=\lambda v$ for some $\lambda \in F$. Without loss of generality, we may assume that $\|v\|=1$. Take $W=\operatorname{Span} v$. Then $V=W \oplus W^{\perp}$.

We claim that W^{\perp} is T-invariant. Accordingly, let $y \in W^{\perp}$. Then $\langle T(y), v\rangle=\left\langle y, T^{*}(v)\right\rangle=\langle y, \lambda v\rangle=$ $\bar{\lambda}\langle y, v\rangle=0$, because $y \in W^{\perp}$. Since $W=\operatorname{Span} v$, this shows that $T(y) \in W^{\perp}$; hence, W^{\perp} is T-invariant.

Now, $\operatorname{dim} W^{\perp}=n-1$, and the characteristic polynomial of T_{W} splits, since it divides the characteristic polynomial of T. Therefore there exists an orthonormal basis γ or W^{\perp} such that $\left[T_{W^{\perp}}\right]_{\gamma}$ is upper triangular. Then $\beta=\gamma \cup\{v\}$ is an orthonormal basis for V, and

$$
[T]_{\beta}=\left[\begin{array}{ccc|c}
& & & * \\
& {\left[T_{W^{\perp}}\right]_{\gamma}} & & * \\
& & & \vdots \\
\hline 0 & \cdots & 0 & *
\end{array}\right]
$$

which is upper triangular. This completes the proof.
4.5.4 Corollary. ${ }^{2}$ Let $A \in M_{n}(F)$ such that the characteristic polynomial of A splits. Then there exist $U, B \in M_{n}(F)$ such that $U^{-1}=U^{*}, B$ is upper triangular, and $A=U B U^{*}$.

Proof. By Schur's theorem, choose an ordered basis β such that $\left[L_{A}\right]_{\beta}$ is upper triangular, and set $B=\left[L_{A}\right]_{\beta}$. Then take $U=[I]_{\beta}^{\sigma}$. The columns of U are orthonormal, so $[I]_{\sigma}^{\beta}=U^{-1}=U^{*}$. Then

$$
A=\left[L_{A}\right]_{\sigma}=[I]_{\beta}^{\sigma}\left[L_{A}\right]_{\beta}[I]_{\sigma}^{\beta}=U B U^{*}
$$

as required.
4.5.5 Definition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. We say that T is normal if $T T^{*}=T^{*} T$. Similarly, we say that $A \in M_{n}(F)$ is normal if $A A^{*}=A^{*} A$.
4.5.6 Proposition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be normal.
(1) For all $x \in V,\|T(x)\|=\left\|T^{*}(x)\right\|$.
(2) Every λ-eigenvector of T is a $\bar{\lambda}$-eigenvector of T^{*}.
(3) If x is a λ-eigenvector of T and y is a μ-eigenvector of T, where $\lambda \neq \mu$, then x and y are orthogonal.

Proof.
(1) $\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle=\left\langle x, T T^{*}(x)\right\rangle=\left\langle T *(x), T^{*}(x)\right\rangle=\left\|T^{*}(x)\right\|^{2}$.
(2) Suppose $T(v)=\lambda v$ for some $0 \neq v \in V$ and $\lambda \in F$. consider $U=T-\lambda I$. Then $U U^{*}=U^{*} U$, so $\left\|U^{*}(v)\right\|=\|U(v)\|=0$, which means that $U^{*}(v)=0$. Therefore $T^{*}(v)=\bar{\lambda} v$.
(3) Suppose $T(x)=\lambda x$ and $T(y)=\mu y$ for some $0 \neq x, y \in V, \lambda, \mu \in F$ with $\lambda \neq \mu$. Then

$$
\lambda\langle x, y\rangle=\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle=\langle x, \bar{\mu} y\rangle=\mu\langle x, y\rangle .
$$

Since $\lambda \neq \mu$, we must have $\langle x, y\rangle=0$, so x and y are orthogonal.
This completes the proof.
4.5.7 Theorem. Let V be a finite-dimensional inner product space over \mathbb{C}. Let $T: V \rightarrow V$ be linear. Then T is normal if and only if there exists an orthonormal basis β for V composed of eigenvectors of T.

Proof. (\Rightarrow) Assume T is normal. By Schur's Theorem, there exists an orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $[T]_{\beta}$ is upper triangular. Say $A=[T]_{\beta}=\left(a_{i j}\right)$. Now $T\left(v_{1}\right)=a_{11} v_{1}$, so v_{1} is an eigenvector of T. Inductvely, suppose $v_{1}, v_{2}, \ldots, v_{k-1}$ are eigenvectors of T for some $k \geq 2$. Say $T\left(v_{i}\right)=\lambda_{i} b_{k}$ for $i \in\{1,2, \ldots, k-1\}$. We claim that v_{i} is an eigenvector of T.

Note that since A is upper triangular,

$$
\left[T\left(v_{k}\right)\right]_{\beta}=[T]_{\beta}\left[v_{k}\right]_{\beta}=A\left[v_{k}\right]_{\beta}=\left(a_{1 k}, a_{2 k}, \ldots, a_{k k}, 0, \ldots, 0\right)
$$

and therefore $T\left(v_{k}\right)=a_{1 k} v_{1}+a_{2 k} v_{2}+\cdots+a_{k k} v_{k}$. By Proposition 4.2.8,

$$
a_{i k}=\left\langle T\left(v_{k}\right), v_{i}\right\rangle=\left\langle v_{k}, T^{*}\left(v_{i}\right)\right\rangle=\left\langle v_{k}, \overline{\lambda_{i}} v_{i}\right\rangle=\lambda\left\langle v_{k}, v_{i}\right\rangle=0
$$

for $1 \leq i \leq k$, so in fact $T\left(v_{k}\right)=a_{k k} v_{k}$. By induction, β is an orthonormal basis for V composed of eigenvectors of T.
(\Leftarrow) Assume there exists an orthonormal basis β for V composed of eigenvectors of T. Then $[T]_{\beta}$ is diagonal. Since β is orthonormal, $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$, which must be diagonal. Therefore

$$
\left[T T^{*}\right]_{\beta}=[T]_{\beta}\left[T^{*}\right]_{\beta}=\left[T^{*}\right]_{\beta}[T]_{\beta}=\left[T^{*} T\right]_{\beta}
$$

Hence $T^{*} T=T T *$, so T is normal. This completes the proof.

[^1]4.5.8 Corollary. ${ }^{3}$ Let $A \in M_{n}(\mathbb{C})$. Then A is normal if and only if there exists $U, D \in M_{n}(\mathbb{C})$ such that $U^{-1}=U^{*}, D$ is diagonal, and $A=U D U^{*}$.
4.5.9 Example. A word of warning:
\[

A=\left[$$
\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}
$$\right] \in M_{2}(\mathbb{R})
\]

satisfies $A A^{*}=A^{*} A=I$, but its characteristic polynomial is $x^{2}+1$, so it is not diagonalizable.
4.5.10 Definition. Let T be a linear operator on a finite-dimensional inner product space V. We say that T is Hermitian if $T=T^{*}$. Similarly, we say that $A \in M_{n}(F)$ is Hermitian if $A=A^{*}$.
4.5.11 Proposition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be a Hermitian operator. Then
(1) every eigenvalue of T is real;
(2) the characteristic polynomial of T splits over F.

Proof.
(1) Since T is Hermitian, T is normal. Let $\lambda \in F$ be an eigenvalue of T with eigenvector $0 \neq x$. Then $\lambda x=T(x)=T^{*}(x)=\bar{\lambda} x$. Since $x \neq 0, \lambda=\bar{\lambda}$, so $\lambda \in \mathbb{R}$.
(2) We know that the characteristic polynomial of T must split over \mathbb{C}. Since every eigenvalue of T is real, the characteristic polynomial of T has no complex roots, so it must also split over \mathbb{R}.

This completes the proof.
4.5.12 Theorem. Let V be a finite-dimensional inner product space over \mathbb{R}. Let $T: V \rightarrow V$ be linear. Then T is Hermitian if and only if there exists an orthonormal basis β for V composed of eigenvectors of T.

Proof. (\Rightarrow) Assume T is Hermitian. By Proposition 4.5.11, its characteristic polynomial splits over \mathbb{R}. By Schur's Theorem, there exists an orthonormal basis β such that $[T]_{\beta}$ is upper triangular. Furthermore $[T]_{\beta}^{*}=\left[T^{*}\right]_{\beta}=[T]_{\beta}$, so $[T]_{\beta}$ is symmetric and hence diagonal.
(\Leftarrow) Assume there exists an orthonormal basis β for V composed of eigenvectors of T. Then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$. Since $[T]_{\beta}$ is diagonal, $[T]_{\beta}^{*}=[T]_{\beta}$, so in fact $\left[T^{*}\right]_{\beta}=[T]_{\beta}$. Therefore $T=T^{*}$, so we're done.
4.5.13 Corollary. Let $A \in M_{n}(\mathbb{R})$. Then A is Hermitian if and only if there exist $U, D \in M_{n}(\mathbb{R})$ such that $U^{T}=U^{-1}, D$ is diagonal, and $A=U D U^{T}$.
4.5.14 Example. The matrix

$$
A=\left[\begin{array}{ll}
i & i \\
i & 1
\end{array}\right] \in M_{2}(\mathbb{C})
$$

is symmetric but not normal, since

$$
A^{*} A=\left[\begin{array}{cc}
-i & -i \\
-i & 1
\end{array}\right]\left[\begin{array}{cc}
i & i \\
i & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & 1-i \\
1+i & 2
\end{array}\right] \neq\left[\begin{array}{cc}
2 & 1+i \\
1-i & 2
\end{array}\right]=\left[\begin{array}{cc}
i & i \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
-i & -i \\
-i & 1
\end{array}\right]=A A^{*}
$$

4.5.15 Definition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. If $T^{-1}=T^{*}$, then we say T is
(1) orthogonal if $F=\mathbb{R}$
(2) unitary if $F=\mathbb{C}$.

Similarly, we say that $A \in M_{n}(\mathbb{R})\left(M_{n}(\mathbb{C})\right)$ is orthogonal (unitary) if $A^{-1}=A^{*}$.
4.5.16 Remark. $A \in M_{n}(F)$ is unitary/orthogonal if and only if L_{A} is unitary/orthogonal.

[^2]4.5.17 Proposition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. The following are equivalent:
(1) T is unitary/orthogonal.
(2) $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in V$.
(3) If β is an orthonormal basis for V, then $T(\beta)$ is an orthonormal basis for V.
(4) There exists an orthonormal basis β for V such that $T(\beta)$ is an orthonormal basis for V.
(5) For all $x \in V,\|T(x)\|=\|x\|$.

Proof. (1) \Rightarrow (2) Assume (1). Then for all $x, y \in V$,

$$
\langle T(x), T(y)\rangle=\left\langle x, T^{*} T(y)\right\rangle=\left\langle x, T^{-1} T(y)\right\rangle=\langle x, y\rangle .
$$

$(2) \Rightarrow(3)$ Assume (2). Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis for V. We first show that T is injective. Let $x \in \operatorname{Null}(T)$. Then $0=\|T(x)\|=\langle T(x), T(x)\rangle=\langle x, x\rangle$, so $x=0$. Therefore $\operatorname{Null}(T)=\{0\}$, so T is injective, and in particular $T(\beta)$ is a basis for B. Finally, for any $1 \leq i, j \leq n$ with $i \neq j$, $\left\langle T\left(v_{i}\right), T\left(v_{j}\right)\right\rangle=\left\langle v_{i}, v_{j}\right\rangle=0$ and $\left\|T\left(v_{i}\right)\right\|^{2}=\left\langle T\left(v_{i}\right), T\left(v_{i}\right)\right\rangle=\left\langle v_{i}, v_{i}\right\rangle=1$, so $T(\beta)$ is orthonormal.
(3) \Rightarrow (4) Trivial.
(4) \Rightarrow (5) Assume (4). Let β be an orthonormal basis for V such that $T(\beta)$ is an orthonormal basis for V. Say $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $x \in V$. Say $x=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$, where $a_{1}, a_{2}, \ldots, a_{n} \in F$. Then
$\|x\|^{2}=\left\langle a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}, a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right\rangle=a_{1} \overline{a_{1}}+a_{2} \overline{a_{2}}+\cdots+a_{n} \overline{a_{n}}=\left\|a_{1}\right\|^{2}+\left\|a_{2}\right\|^{2}+\cdots+\left\|a_{n}\right\|^{2}$
and similarly
$\|T(x)\|^{2}=\left\langle a_{1} T\left(v_{1}\right)+a_{2} T\left(v_{2}\right)+\cdots+a_{n} T\left(v_{n}\right), a_{1} T\left(v_{1}\right)+a_{2} T\left(v_{2}\right)+\cdots+a_{n} T\left(v_{n}\right)\right\rangle=\left\|a_{1}\right\|^{2}+\left\|a_{2}\right\|^{2}+\cdots+\left\|a_{n}\right\|^{2}$,
so $\|x\|=\|T(x)\|$.
$(5) \Rightarrow(1)$ Assume $\|T(x)\|=\|x\|$ for all $x \in V$. Then for all $x \in V,\langle T(x), T(x)\rangle=\langle x, x\rangle$, so $\left\langle x, T^{*} T(x)\right\rangle=$ $\langle x, x\rangle$, which implies that $\left\langle x,\left(T^{*} T-I\right)(x)\right\rangle=0$. Setting $U=T^{*} T-I$, we note that $U=U^{*}$. Therefore there exists an orthonormal basis for V composed of eigenvectors of U. Accordingly, let $0 \neq v \in V$ such that $U(v)=\lambda v$ for some $\lambda \in F$. Then $0=\langle v, U(v)\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle$, and since $v \neq 0$ we must have $\lambda=0$. Therefore all the eigenvalues of U are 0 , and since U is diagonalizable, $U=0$. Therefore $T^{*} T=I$.

This completes the proof.
4.5.18 Definition. Let $A, B \in M_{n}(F)$. We say that A and B are orthogonally/unitarily equivalent if there exists an orthogonal/unitary matrix U such that $A=U B U^{*}$. If B is diagonal, we say that A is orthogonally/unitarily diagonalizable.
4.5.19 Corollary. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be orthogonal/unitary. Then every eigenvalue of T has absolute value 1.

Proof. If $T(x)=\lambda x$ for some $0 \neq x \in V, \lambda \in F$, then $|\lambda|\|x\|=\|\lambda x\|=\|T(x)\|=\|x\|$, so $|\lambda|=1$.
4.5.20 Corollary. Let V be a finite-dimensional inner product space over \mathbb{R}. Let $T: V \rightarrow V$ be linear. Then T is orthogonal and Hermitian if and only if there exists an orthonormal basis for V composed of ± 1 eigenvectors of T.
4.5.21 Corollary. Let V be a finite-dimensional inner product space over \mathbb{C}. Let $T: V \rightarrow V$ be linear. Then T is unitary if and only if there exists an orthonormal basis for V composed of eigenvectors of T where each eigenvector corresponds to an eigenvalue of modulus 1.
4.5.22 Example. Let

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Then A is normal, but not Hermitian, so A is unitarily diagonalizable but not orthogonally diagonalizable. The characteristic polynomial of A is $f(x)=x^{2}+1=(x+i)(x-i)$.

We see by inspection that $(i, 1)$ and $(1, i)$ are eigenvectors for A corresponding to eigenvalues $\lambda_{1}=i$ and $\lambda_{2}=-i$ respectively. Therefore $E_{\lambda_{1}}=\operatorname{Span}\{(i, 1)\}$ and $E_{\lambda_{2}}=\operatorname{Span}\{(1, i)\}$. Since A is normal, these eigenvectors must be orthogonal, so $\beta=\left(\frac{1}{\sqrt{2}}(i, 1), \frac{1}{\sqrt{2}}(1, i)\right)$ is an orthonormal basis for \mathbb{C}^{2}. Therefore $A=U D U^{*}$, where

$$
U=\left[\begin{array}{cc}
i / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & i / \sqrt{2}
\end{array}\right] \quad D=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

4.5.23 Example. Let

$$
A=\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right]
$$

Note that A is symmetric and thus orthogonally diagonalizable. The characteristic polynomial of A is

$$
\begin{aligned}
f(x) & =\left|\begin{array}{ccc}
-x & 2 & x \\
2 & -x & 2 \\
2 & 2 & -x
\end{array}\right| \\
& =-x\left|\begin{array}{cc}
-x & 2 \\
2 & -x
\end{array}\right|-2\left|\begin{array}{cc}
2 & 2 \\
2 & -x
\end{array}\right|+2\left|\begin{array}{cc}
2 & 2 \\
-x & 2
\end{array}\right| \\
& =-x\left(x^{2}-4\right)-2(-2 x-4)+2(4+2 x) \\
& =-x^{3}+4 x+4 x+8+8+4 x \\
& =-x^{3}+12 x+16 \\
& =(x-4)\left(-x^{2}-4 x-4\right) \\
& =-(x-4)(x+2)^{2} .
\end{aligned}
$$

Setting $\lambda_{1}=4$, we note that $(1,1,1)$ is a λ_{1} eigenvector, so $E_{\lambda_{1}}=\operatorname{Span}\{(1,1,1)\}$. Setting $\lambda_{2}=-2$, we see that $(1,-1,0)$ and $(-1,0,1)$ are λ_{2} eigenvectors, so $E_{\lambda_{2}}=\operatorname{Span}\{(1,-1,0),(-1,0,1)\}$. Applying the Gram-Schmidt procedure produces orthonormal bases $\left\{\frac{1}{\sqrt{3}}(1,1,1)\right\}$ and $\left\{\frac{1}{\sqrt{2}}(1,-1,0), \frac{1}{\sqrt{6}}(-1,-1,2)\right\}$ for $E_{\lambda_{1}}$ and $E_{\lambda_{2}}$ respectively. Since A is normal, an orthonormal basis for V is given by

$$
\left\{\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,-1,0), \frac{1}{\sqrt{6}}(-1,-1,2)\right\}
$$

. Therefore $A=U D U^{T}$, where

$$
U=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & -1 \sqrt{2} & -1 \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6}
\end{array}\right] \quad D=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

4.6 Rigid Motions

4.6.1 Definition. Let V be a finite-dimensional inner product space over \mathbb{R}. We say that $f: V \rightarrow V$ is a rigid motion if $\|f(x)-f(y)\|=\|x-y\|$ for all $x, y \in V$.
4.6.2 Example. In \mathbb{R}^{2}, rotation, translation, and reflection are all rigid motions. As we will show, these are the only rigid motions in \mathbb{R}^{2}.
4.6.3 Definition. Let V be a vector space. A translation is a function $f: V \rightarrow V$ given by $f(x)=x+v$ for some fixed $v \in V$.
4.6.4 Proposition. Let V be a finite-dimensional inner product space over \mathbb{R}. Let $f: V \rightarrow V$ be a rigid motion. Then there exists a unique orthogonal operator $T: V \rightarrow V$ and a unique translation $g: V \rightarrow V$ such that $f=g \circ T$.

Proof. Define $T: V \rightarrow V$ by $T(x)=f(x)-f(0)$. We claim that T is linear and orthogonal. First note the following:
(1) For all $x, y \in V,\|T(x)-T(y)\|=\|f(x)-f(0)-f(y)+f(0)\|=\|f(x)-f(y)\|=\|x-y\|$.
(2) For all $x \in V,\|T(x)\|^{2}=\|f(x)-f(0)\|^{2}=\|x-0\|^{2}=\|x\|^{2}$, so $\|T(x)\|=\|x\|$.
(3) For $x, y \in V,\|T(x)-T(y)\|^{2}=\|T(x)\|^{2}+\|T(y)\|^{2}-2\langle T(x), T(y)\rangle=\|x\|^{2}+\|y\|^{2}-2\langle T(x), T(y)\rangle$ and $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle$. By (1), $\|T(x)-T(y)\|=\|x-y\|$, so $\langle x, y\rangle=\langle T(x), T(y)\rangle$.

Let $x, y \in V, \alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
\|T(x+\alpha y)-T(x)-\alpha T(y)\|^{2} & =\|T(x+\alpha y)-T(x)\|^{2}+\|\alpha T(y)\|^{2}-2\langle T(x+\alpha y)-T(x), \alpha T(y)\rangle \\
& =\|x-\alpha y-x\|^{2}+\|\alpha y\|^{2}-2\langle x+\alpha y-x, \alpha y\rangle \\
& =2 \alpha^{2}\|y\|^{2}-2 \alpha^{2}\langle y, y\rangle \\
& =0
\end{aligned}
$$

so $T(x+\alpha y)=T(x)+\alpha T(y)$. Therefore T is linear. By (2), T is orthogonal.
It remains to show uniqueness. Suppose T and U are orthogonal and $a, b \in V$ such that $f(x)=T(x)+a=$ $U(x)+b$. Then $f(a)=T(0)=a=U(0)=b$, so $a=b$, and therefore $U=T$. This completes the proof.
4.6.5 Example. Consider $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponding to counter-clockwise rotation by θ. Then for all $x \in \mathbb{R}^{2},\left\|T_{\theta}(x)\right\|=\|x\|$, so T_{θ} is orthogonal. Moreover, $T_{\theta}\left(e_{1}\right)=(\cos \theta, \sin \theta)$ and $T_{\theta}\left(e_{2}\right)=(-\sin \theta, \cos \theta)$. Therefore

$$
\left[T_{\theta}\right]_{\sigma}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

4.6.6 Example. Consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ corresponding to reflection over the line $y=m x$. Let α be the (positive) angle between the x-axis and $y=m x$. Take $v_{1}=(\cos \alpha, \sin \alpha)$ and $v_{2}=(-\sin \alpha, \cos \alpha)$; note that $\left\|v_{1}\right\|=1=\left\|v_{2}\right\|$ and $v_{1} \cdot v_{2}=0$, so $\beta=\left\{v_{1}, v_{2}\right\}$ is an orthonormal basis for $b b R^{2}$. Therefore

$$
[T]_{\beta}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

This gives us $[T]_{\sigma}=U[T]_{\beta} U^{T}$, where

$$
U=\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
{[T]_{\sigma} } & =\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos ^{2} \alpha-\sin ^{2} \alpha & 2 \cos \alpha \sin \alpha \\
2 \cos \alpha \sin \alpha & \sin ^{2} \alpha-\cos ^{2} \alpha
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (2 \alpha) & \sin (2 \alpha) \\
\sin (2 \alpha) & -\cos (2 \alpha)
\end{array}\right] .
\end{aligned}
$$

4.6.7 Proposition. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an orthogonal operator. Then T is a rotation or a reflection over a line through the origin. In particular, if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rigid motion, then f is either a rotation or a reflection followed by a translation.

Proof. Let $\sigma=\left\{e_{1}, e_{2}\right\}$ be the standard basis for \mathbb{R}^{2}. Since T is orthogonal, $T(\sigma)=\left\{T\left(e_{1}\right), T\left(e_{2}\right)\right\}$ is an orthonormal basis for \mathbb{R}^{2}. Then $\left\|T\left(e_{1}\right)\right\|=1$, so $T\left(e_{1}\right)=(\cos \theta, \sin \theta)$ for some $\theta \in[0,2 \pi)$. Moreover, $\left\langle T\left(e_{1}\right), T\left(e_{2}\right)\right\rangle=0$ and $\left\|T\left(e_{2}\right)\right\|=1$. It follows that either $T\left(e_{2}\right)=\left(\cos \left(\theta+\frac{\pi}{2}\right), \sin \left(\theta+\frac{\pi}{2}\right)\right)=(-\sin \theta, \cos \theta)$ or $T\left(e_{2}\right)=\left(\cos \left(\theta-\frac{\pi}{2}\right), \sin \left(\theta-\frac{\pi}{2}\right)\right)=(\sin \theta,-\cos \theta)$. Therefore $[T]_{\sigma}$ is one of

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \quad\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

and therefore T is either a rotation or a reflection, as required.

4.7 Spectral Decomposition

4.7.1 Definition. Let V be a finite-dimensional vector space. Let $W_{1}, W_{2} \leq V$ such that $V=W_{1} \oplus W_{2}$. Recall that for every $v \in V$ there exist unique $x_{v} \in W_{1}, y_{v} \in W_{2}$ such that $v=x_{v}+y_{v}$. The linear map $T: V \rightarrow V$ given by $T(v)=x_{v}$ is called the projection on W_{1} along W_{2}. If $W_{2}=W_{1}^{\perp}$, then $T(v)=\operatorname{proj}_{W}(v)$, and we say that T is an orthogonal projection.
4.6 Remark. If T is as in the above definition, $\operatorname{Range}(T)=W_{1}$ and $\operatorname{Null}(T)=W_{2}$.
4.7.2 Proposition. Let V be a finite dimensional vector space. Then a linear operator $T: V \rightarrow V$ is a projection if and only if $T=T^{2}$.

Proof. (\Rightarrow) Assume T is a projection. Thus T is the projection on Range (T) along $\operatorname{Null}(T)$. Let $v \in V$. Then $v=T(x)+z$, for some $T(x) \in \operatorname{Range}(T), z \in \operatorname{Null}(T)$. Then $T(v)=T^{2}(x)+T(z)=T^{2}(x)=T(x)$, so $T^{2}(v)=T^{2}(x)=T(x)=T(v)$. Therefore $T=T^{2}$.
(\Leftarrow) Assume $T=T^{2}$. We claim that $V=\operatorname{Range}(T) \oplus \operatorname{Null}(T)$. Indeed, if $x \in \operatorname{Range}(T) \cap \operatorname{Null}(T)$, then $T(x)=0$ and there is some $y \in V$ such that $x=T(y)$. But then $0=T(x)=T^{2}(y)=T(y)=x$, so Range $(T) \cap \operatorname{Null}(T)=\{0\}$. But $\operatorname{dim}(\operatorname{Range}(T)+\operatorname{Null}(T))=\operatorname{dim} V$ by the Rank-Nullity Theorem, so $V=\operatorname{Range}(T) \oplus \operatorname{Null}(T)$. Moveover, if $v=T(x)+z$, where $T(x) \in \operatorname{Range}(T)$ and $z \in N u l l(T)$, then $T(v)=T^{2}(x)=T(x)$, so T is the projection on Range (T) along $\operatorname{Null}(T)$.
4.7.3 Proposition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be a linear operator. Then T is an orthogonal projection if and only if $T=T^{2}=T^{*}$.

Proof. (\Rightarrow) Assume T is an orthogonal projection. By Proposition 4.7.2, we know that $T=T^{2}$, so it suffices to show that T is Hermitian. Let $x, y \in V$. Then $x=T\left(v_{1}\right)+z_{1}$ and $y=T\left(v_{2}\right)+z_{2}$ for some $T(v), T\left(v_{2}\right) \in \operatorname{Range}(T), z_{1}, z_{2} \in \operatorname{Null}(T)$. Then

$$
\langle T(x), y\rangle=\left\langle T^{2}\left(v_{1}\right), T\left(v_{2}\right)+z_{2}\right\rangle=\left\langle T\left(v_{1}\right), T\left(v_{2}\right)+z_{2}\right\rangle=\left\langle T\left(v_{1}\right), T\left(v_{2}\right)\right\rangle+\left\langle T\left(v_{1}\right), z_{2}\right\rangle .
$$

Since T is an orthogonal projection, $\left\langle T\left(v_{1}\right), z_{2}\right\rangle=0$. Therefore $\langle T(x), y\rangle=\left\langle T\left(v_{1}\right), T\left(v_{2}\right)\right\rangle$. Similarly,

$$
\langle x, T(y)\rangle=\left\langle T\left(v_{1}\right)+z_{1}, T^{2}\left(v_{2}\right)\right\rangle=\left\langle T\left(v_{1}\right)+z_{1}, T\left(v_{2}\right)\right\rangle=\left\langle T\left(v_{1}\right), T\left(v_{2}\right)\right\rangle+\left\langle z_{1}, T\left(v_{2}\right)\right\rangle=\left\langle T\left(v_{1}\right), T\left(v_{1}\right)\right\rangle
$$

Therefore $\langle x, T(y)\rangle=\langle y, T(x)\rangle$, and since x and y were arbitrary, $T=T^{*}$.
(\Leftarrow) Assume $T=T^{2}=T^{*}$. By Proposition 4.7.2, we know that T is a projection, so it suffices to show that T is an orthogonal projection, i.e., that $\operatorname{Null}(T)=\operatorname{Range}(T)^{\perp}$. Accordingly, let $T(x) \in \operatorname{Range}(T)$, $y \in \operatorname{Null}(T)$. Then

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle=\langle x, T(y)\rangle=\langle x, 0\rangle=0
$$

so $\operatorname{Null}(T) \subseteq \operatorname{Range}(T)^{\perp}$. But $\operatorname{dim} \operatorname{Null}(T)=\operatorname{dim} V-\operatorname{Range}(T)=\operatorname{Range}(T)^{\perp}$, so $\operatorname{Null}(T)=\operatorname{Range}(T)^{\perp}$. Therefore T is an orthogonal projection.
4.7.4 Definition. For $i, j \in \mathbb{Z}$, we define

$$
\delta_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

4.7.5 Theorem (Spectral Theorem). Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. Let the distinct eigenvalues of T be $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. If $F=\mathbb{C}$, assume T is normal; if $F=\mathbb{R}$, assume T is Hermitian. For $1 \leq i \leq k$, let $W_{i}=E_{\lambda_{i}}$ and $T_{i}(x)=\operatorname{proj}_{W_{i}}(x)$. Then
(1) $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$
(2) $W_{i}^{\perp}=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{i-1} \oplus W_{i+1} \oplus \cdots \oplus W_{k}=: W_{i}^{\prime}$
(3) $T_{i} \circ T_{j}=\delta_{i j} T_{i}$
(4) $I=T_{1}+T_{2}+\cdots+T_{k}$
(5) $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$.

Proof. Fix $1 \leq i, j \leq k$.
(1) Since T is normal/Hermitian, its distinct eigenspaces intersect trivially; therefore $W_{1} \oplus W_{2} \oplus \cdots \oplus$ $W_{k} \leq V$. Also, T is diagonalizable, so $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}+\cdots+\operatorname{dim} W_{k}=\operatorname{dim} V$. It follows that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$.
(2) Let $x=x_{1}+x_{2}+\cdots+x_{i-1}+x_{i+1}+\cdots+x_{k} \in W_{i}^{\prime}, y \in W_{i}$. Then
$\langle x, y\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle+\cdots+\left\langle x_{i-1}, y\right\rangle+\left\langle x_{i+1}, y\right\rangle+\cdots+\left\langle x_{k}, y\right\rangle=0+0+\cdots+0+0+\cdots+0=0$, since T is normal. Therefore $W_{i}^{\prime} \subseteq W_{i}^{\perp}$, and since $\operatorname{dim} W_{i}^{\prime}=\operatorname{dim} V-\operatorname{dim} W_{i}=\operatorname{dim} W_{i}^{\perp}, W_{i}^{\prime}=W_{i}^{\perp}$.
(3) First note that $T_{i} \circ T_{i}=T_{i}^{2}=T_{i}$, since T_{i} is a projection. If $i \neq j$, then $T_{i} \circ T_{j}=0$, since T is normal/Hermitian and therefore $E_{\lambda_{i}}$ and $E_{\lambda_{j}}$ intersect trivially.
(4) Let $x=x_{1}+x_{2}+\cdots+x_{k}$, where each $x_{i} \in W_{i}$. Then

$$
\left(T_{1}+T_{2}+\cdots+T_{k}\right)(x)=T_{1}(x)+T_{2}(x)+\cdots+T_{k}(x)=x_{1}=x_{2}+\cdots+x_{k}
$$

so $T_{1}+T_{2}+\cdots+T_{k}=I$.
(5) Again,let $x=x_{1}+x_{2}+\cdots+x_{k}$, where each $x_{i} \in W_{i}$. Then

$$
\begin{aligned}
& \quad\left(\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}\right)(x)=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{k} x_{k}=T\left(x_{1}\right)+T\left(x_{2}\right)+\cdots+T\left(x_{k}\right)=T(x) \text {, } \\
& \text { so }\left(\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}\right)=T \text {. }
\end{aligned}
$$

This completes the proof.
4.7.6 Definition. Let V be a vector space. Let $T: V \rightarrow V$ be linear. The set of eigenvalues of T is called the spectrum of T and denoted $\sigma(T)$. The expression

$$
T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}
$$

as in the spectral theorem is called the spectral decomposition of T.
4.7.7 Remark (Lagrange Interpolation). Let $c_{0}, c_{1}, \ldots, c_{n} \in F$ be distinct. Define

$$
f_{i}(x)=\frac{\prod_{j \neq i}\left(x-c_{j}\right)}{\prod_{j \neq i}\left(c_{i}-c_{j}\right)}
$$

and note that $f_{i}\left(c_{j}\right)=\delta_{i j}$ for all $1 \leq i, j \leq n$.

We claim that $\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ is a basis for $P_{n}(F)$ ．Indeed，if

$$
a_{0} f_{0}+a_{1} f_{1}+\cdots+a_{n} f_{n}=0
$$

for some $a_{0}, a_{1}, \ldots, a_{n} \in F$ ，then for every $1 \leq i \leq n$

$$
0=\left(a_{0} f_{0}+a_{1} f_{1}+\cdots+a_{n} f_{n}\right)\left(c_{i}\right)=a_{i},
$$

so $\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ is linearly independent and hence forms a basis for $P_{n}(F)$ ．
4．7．8 Remark．With V and T as in the Spectral Theorem，$T^{\ell}=\lambda_{1}^{\ell} T_{1}+\lambda_{2}^{\ell} T_{2}+\cdots+\lambda_{k}^{\ell} T_{k}$ for $\ell \in \mathbb{N}$ ．It follows that for $f(x) \in F[x], f(T)=f\left(\lambda_{1}\right) T_{1}+f\left(\lambda_{2}\right) T_{2}+\cdots+f\left(\lambda_{k}\right) T_{k}$ ．

4．7．9 Corollary．Let V be a finite－dimensional inner product space over \mathbb{C} ．Let $T: V \rightarrow V$ be a linear opreator．Then T is normal if and only if $T^{*}=f(T)$ for some $f(x) \in F[x]$ ．

Proof．(\Rightarrow) Suppose T is normal．Let $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$ be the spectral decomposition of T ． Using Lagrange interpoation，let $f(x) \in F[x]$ such that $f\left(\lambda_{i}\right)=\overline{\lambda_{i}}$ for $1 \leq i \leq k$ ．Then

$$
T^{*}=\sum_{i=1}^{k} \overline{\lambda_{i}} T_{i}^{*}=\sum_{i=1}^{k} \overline{\lambda_{i}} T_{i}=\sum_{i=1}^{k} f\left(\lambda_{i}\right) T_{i}=f(T)
$$

since each T_{i} is an orthogonal projection and hence is Hermitian．
(\Leftarrow) For any $f(x) \in F[x], T f(T)=f(T) T$ ，so $T T^{*}=T^{*} T$ ，and we＇re done．
4．7．10 Corollary．Let V and T be as in the Spectral Theorem．Then for each $1 \leq i \leq k$ ，there exists $g_{i} \in F[x]$ such that $g_{i}(T)=T_{i}$ ．

Proof．For each $1 \leq i \leq k$ ，choose $g_{i} \in F[x]$ such that $g_{i}\left(\lambda_{j}\right)=\delta_{i j}$ for $1 \leq j \leq k$ ．
4．7．11 Corollary．Let V be a finite－dimensional inner product space over \mathbb{C} ．Let $T: V \rightarrow V$ be linear．Then T is Hermitian if and only if T is normal and $\sigma(T) \subseteq \mathbb{R}$ ．

Proof．(\Rightarrow) See part（1）of Proposition 4．5．11．
(\Leftarrow) Let $\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$ be the spectral decomposition of T ，where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$ ．Then

$$
T^{*}=\overline{\lambda_{1}} T_{1}^{*}+\overline{\lambda_{2}} T_{2}^{*}+\cdots+\overline{\lambda_{k}} T_{k}^{*}=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}=T
$$

so T is Hermitian，and we＇re done．
4．7．12 Corollary．Let T be a finite－dimensional inner product space over \mathbb{C} ．Let $T: V \rightarrow V$ be linear．Then T is unitary if and only if T is normal and $|\lambda|=1$ for all $\lambda \in \sigma(T)$ ．

Proof．(\Rightarrow) See Corollary 4．5．19．
(\Leftarrow) Suppose T is normal and $|\lambda|=1$ for all $\lambda \in \sigma(T)$ ．Say the spectral decomposition of T is $T=$ $\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$ ．Then $T^{*}=\overline{\lambda_{1}} T_{1}+\overline{\lambda_{2}} T_{2}+\cdots+\overline{\lambda_{k}} T_{k}$ ，so

$$
T T^{*}=\lambda_{1} \overline{\lambda_{1}} T_{1}+\lambda_{2} \overline{\lambda_{2}} T_{2}+\cdots+\lambda_{k} \overline{\lambda_{k}} T_{k}=T_{1}+T_{2}+\cdots+T_{k}=I
$$

so T is unitary，and we＇re done．

4.8 Singular Value Decomposition

4.8.1 Definition. Let $T: V \rightarrow W$ be linear, where V and W are finite- dimensional inner product spaces over the same field F. Let $T: V \rightarrow W$ be linear. A function $T^{*}: W \rightarrow V$ is called an adjoint of T if $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$ for all $x \in V$ and $y \in W$.
4.8.2 Proposition. Let $T: V \rightarrow W$ be linear, where V and W are finite- dimensional inner product spaces over the same field F. Let $T: V \rightarrow W$ be linear. Then:
(1) T^{*} exists, is unique and is linear.
(2) If β and γ are orthonormal bases for V and W respectively, then $\left[T^{*}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{*}$.

Proof.
(1) For arbitrary $y \in W, U_{y}: V \rightarrow F$ defined by $U_{y}(x)=\langle T(x), y\rangle$ is a linear functional. By the Riesz Representation Theorem, there exists a unique $y^{\prime} \in V$ such that $U_{y}(x)=\left\langle x, y^{\prime}\right\rangle$ for all $x \in V$. Define $T^{*}: W \rightarrow V$ by $T *(y)=y^{\prime}$.
It remains to show that T^{*} is linear. Let $x \in V, y_{1}, y_{2} \in W, \alpha \in F$. Then

$$
\begin{aligned}
\left\langle x, T^{*}\left(\alpha y_{1}+y_{2}\right)\right\rangle & =\left\langle T(x), \alpha y_{1}+y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle T(x), y_{1}\right\rangle+\left\langle T(x), y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle x, T^{*}\left(y_{1}\right)\right\rangle+\left\langle x, T^{*}\left(y_{2}\right)\right\rangle \\
& =\left\langle x, \alpha T^{*}\left(y_{1}\right)\right\rangle+\left\langle x, T^{*}\left(y_{2}\right)\right\rangle \\
& =\left\langle x, \alpha T^{*}\left(y_{1}\right)+T^{*}\left(y_{2}\right)\right\rangle .
\end{aligned}
$$

Since $x \in V$ was arbitrary, it follows that $\left.T^{(} \alpha y_{1}+y_{2}\right)=\alpha T^{*}\left(y_{1}\right)+T^{*}\left(y_{2}\right)$, so T^{*} is linear.
(2) Say $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Let $A=\left(a_{i j}\right)=[T]_{\beta}^{\gamma}$. Let $B=\left(b_{i j}\right)=\left[T^{*}\right]_{\gamma}^{\beta}$. Then by Proposition 4.2.8,

$$
b_{i j}=\left\langle T^{*}\left(w_{j}\right), v_{i}\right\rangle=\overline{\left\langle v_{i}, T^{*}\left(w_{j}\right)\right\rangle}=\overline{\left\langle T\left(v_{i}\right), w_{j}\right\rangle}=\overline{a_{j i}},
$$

so $B=A^{*}$, as required.
This completes the proof.
4.8.3 Definition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be linear. We say that T is positive semidefinite if T is Hermitian and $\langle T(x), x\rangle \geq 0$ for all $x \in V$.
4.8.4 Proposition. Let V be a finite-dimensional inner product space. Let $T: V \rightarrow V$ be a linear operator. Then
(1) T is positive semidefinite if and only if $T=T^{*}$ and $\sigma(T) \subseteq[0, \infty)$
(2) T is positive semidefinite if and only if $T=U^{*} U$ for some linear operator $U: V \rightarrow V$.

Proof.
$(1)(\Rightarrow)$ Suppose T is positive semidefinite. Then $T=T^{*}$ by definition; it follows that $\sigma(T) \subseteq \mathbb{R}$. If T has a negative eigenvalue, i.e., there exists $0>\lambda \in \mathbb{R}, 0 \neq v \in V$ such that $T(v)=\lambda v$, then $\langle T(v), v\rangle=\langle-\lambda v, v\rangle=-\lambda\langle v, v\rangle<0$, since $\langle v, v\rangle \in \mathbb{R}^{+}$. But since T is positive semidefinite, this cannot be, so T has no negative eigenvalues. Hence $\sigma(T) \subseteq[0, \infty)$.
(\Leftarrow) Suppose $T=T^{*}$ and $\sigma(T) \subseteq[0, \infty)$. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis for V composed of eigenvectors of T, where $n=\operatorname{dim} V$. Say $T\left(v_{i}\right)=\lambda_{i} v_{i}$ for $1 \leq i \leq n$. Let $x \in V$. Then $x=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$ for some $a_{1}, a_{2}, \ldots, a_{n} \in F$. Then

$$
\langle T(x), x\rangle=\left\langle a_{1} T\left(v_{1}\right)+a_{1} T\left(v_{2}\right)+\cdots+a_{n} T\left(v_{n}\right), a_{1} v_{2}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right\rangle
$$

$$
\begin{aligned}
& =\left\langle a_{1} \lambda_{1} v_{1}+a_{1} \lambda_{2} v_{2}+\cdots+a_{n} \lambda_{n} v_{n}, a_{1} v_{2}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right\rangle \\
& =a_{1} \lambda_{1} \overline{a_{1}}\left\langle v_{1}, v_{1}\right\rangle+a_{2} \lambda_{2} \overline{a_{2}}\left\langle v_{2}, v_{2}\right\rangle+a_{n} \lambda_{n} \overline{a_{n}}\left\langle v_{n}, v_{n}\right\rangle \\
& =\left|a_{1}\right|^{2} \lambda_{1}+\left|a_{2}\right|^{2} \lambda_{2}+\cdots+\left|a_{n}\right|^{2} \lambda_{n} .
\end{aligned}
$$

Since $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \geq 0,\langle T(x), x\rangle \geq 0$, so T is positive semidefinite.
(2) (\Leftarrow) Suppose $T=U^{*} U$ for some linear operator $U: V \rightarrow V$. Let $x \in V$. Then

$$
\langle T(x), x\rangle=\left\langle U^{*} U(x), x\right\rangle=\langle U(x), U(x)\rangle \in[0, \infty)
$$

so T is positive definite.
(\Rightarrow) Suppose T is positive semidefinite. Since T is Hermitian by definition, there exists an orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for V consisting of eigenvectors of T. Furthermore, each v_{i} corresponds to some eigenvalue $\lambda_{i} \in[0, \infty)$. Define $U\left(v_{i}\right)=\sqrt{\lambda_{i}} v_{i}$ for each v_{i} and extend via linearity. Then β is an orthonormal basis for V composed of eigenvectors of U, so U is normal. Therefore each v_{i} is a $\overline{\sqrt{\lambda_{i}}}=\sqrt{\lambda_{i}}$ eigenvector for U^{*}. Then for each $v_{i} \in \beta, U^{*} U\left(v_{i}\right)=\lambda_{i} v_{i}=T\left(v_{i}\right)$, so $T=U^{*} U$.

This completes the proof.
4.8.5 Proposition. Let V, W be finite-dimensional inner product spaces over F. Let $T: V \rightarrow W$ be linear. Then $T^{*} T$ and $T T^{*}$ are positive semidefinite with $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$ and $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}\left(T T^{*}\right)$.

Proof. Let $x \in V, y \in W$. We see that

$$
\left\langle T^{*} T(x), x\right\rangle=\langle T(x), T(x)\rangle \in[0, \infty) \quad\left\langle T T^{*}(y), y\right\rangle=\left\langle T^{*}(y), T^{*}(y)\right\rangle \in[0, \infty)
$$

so $T^{*} T$ and $T T^{*}$ are positive semidefinite.
We claim that $\operatorname{Null}(T)=\operatorname{Null}\left(T^{*} T\right)$. Clearly $\operatorname{Null}(T) \subseteq \operatorname{Null}\left(T^{*} T\right)$. Let $x \in \operatorname{Null}\left(T^{*} T\right)$. Then

$$
\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle=\langle x, 0\rangle=0
$$

so $T(x)=0$ and in fact $\operatorname{Null}\left(T^{*} T\right)=\operatorname{Null}(T)$. Similarly, $\operatorname{Null}\left(T T^{*}\right)=\operatorname{Null}\left(T^{*}\right)$. Therefore we must have $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*} T\right)$ and $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}\left(T T^{*}\right)$, so we're done.
4.8.6 Theorem (Singular Value Decomposition). Let V, W be finite-dimensional inner product spaces over the same field F. Let $T: V \rightarrow W$ be linear. Let $\operatorname{rank}(T)=r$. Then there exist orthonormal bases $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ for V and W respectively and real scalars $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ such that $T\left(v_{i}\right)=\sigma_{i} u_{i}$ for $i \leq r$ and $T\left(v_{i}\right)=0$ for $i>r$. (For $r<i<n$, we define $\sigma_{i}=0$.) Conversely, if the above conclusion holds, then each v_{i} is a σ_{i}^{2} eigenvector of $T^{*} T$. In particular, the $\sigma_{i} s$ are uniquely determined.

Proof. Consider $T^{*} T: V \rightarrow V$. By Proposition 4.8.5, $T^{*} T$ is positive semidefinite, and $\operatorname{rank}\left(T^{*} T\right)=$ $\operatorname{rank}(T)=r$. Since $T^{*} T$ is Hermitian, there exists an orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for V consisting of eigenvectors of $T^{*} T$. Say $T^{*} T\left(v_{i}\right)=\lambda_{i} v_{i}$ for $1 \leq i \leq n$, where $\lambda_{i} \in[0, \infty)$. For $1 \leq i \leq n$, let $\sigma_{i}=\sqrt{\lambda_{i}}$. Without loss of generality, assume $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$ and $\lambda_{i}=0$ for $r<i \leq n$. Then $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and $\sigma_{i}=0$ for $r<i \leq n$. For $i \leq r$, let $u_{i}=\frac{1}{\sigma_{i}} T\left(v_{i}\right)$. Then

$$
\left\langle u_{i}, u_{j}\right\rangle=\left\langle\frac{1}{\sigma_{i}} T\left(v_{i}\right), \frac{1}{\sigma_{j}} T\left(v_{j}\right)\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle T^{*} T\left(v_{i}\right), v_{j}\right\rangle=\frac{1}{\sigma_{i} \sigma_{j}}\left\langle\lambda_{i} v_{i}, v_{j}\right\rangle=\frac{\lambda_{i}}{\sigma_{i} \sigma_{j}}\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}
$$

Therefore $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is an orthonormal set. By the Gram-Schmidt procedure, we may extend this to an orthonormal basis $\left\{u_{1}, u_{2}, \ldots, u_{r}, \ldots, u_{m}\right\}$ for W. Then for $i \leq r, T\left(v_{i}\right)=\sigma_{i} u_{i}$ and for $i>r, T^{*} T\left(v_{i}\right)=0$, so by the proof of Proposition 4.8.5, $T\left(v_{i}\right)=0$.

It remains to show that the $\sigma_{i} \mathrm{~s}$ are uniquely determined. Suppose we have $u_{i} \mathrm{~s}, v_{i} \mathrm{~s}$, and $\sigma_{i} \mathrm{~s}$ as in the theorem statement. Then

$$
T^{*}\left(u_{i}\right)=\sum_{j=1}^{n}\left\langle T^{*}\left(u_{i}\right), v_{j}\right\rangle v_{j}=\sum_{j=1}^{n}\left\langle u_{i}, T\left(v_{j}\right)\right\rangle v_{j}= \begin{cases}\sigma_{i} v_{i} & 1 \leq i \leq r \\ 0 & r<i \leq n\end{cases}
$$

For $i \leq r, T^{*} T\left(v_{i}\right)=T^{*}\left(\sigma_{i} u_{i}\right)=\sigma_{i} T^{*}\left(u_{i}\right)=\sigma_{i}^{2} v_{i}$ and for $i>r T^{*} T\left(v_{i}\right)=T^{*}(0)=\sigma_{i} v_{i}$. Therefore the $\sigma_{i} \mathrm{~s}$ are the square roots of the eigenvalues of $T^{*} T$, so they are uniquely determined, and we're done.
4.8.7 Definition. ${ }^{4}$ In the Singular Value Theorem, the $\sigma_{i} \mathrm{~S}$ are called the singular values of T. If $r<m, n$, then we also call $\sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{k}=0$, where $k=\min (m, n)$, singular values of T.
4.8.8 Example. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $T(x, y)=(x, x+y, x-y)$. Let β_{i} be the standard (orthonormal) basis for $\mathbb{R}^{i} .{ }^{5}$ Then

$$
[T]_{\beta_{2}}^{\beta_{3}}=\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & -1
\end{array}\right]=A
$$

Then

$$
\left[T^{*} T\right]_{\beta_{2}}^{\beta_{2}}=\left[T^{*}\right]_{\beta_{3}}^{\beta_{2}}[T]_{\beta_{2}}^{\beta_{3}}=\left([T]_{\beta_{2}}^{\beta_{3}}\right)^{*}[T]_{\beta_{2}}^{\beta_{3}}=A^{*} A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]
$$

Therefore $\beta_{2}=\left\{v_{1}=e_{1}, v_{2}=e_{2}\right\}$ is an orthonormal basis for \mathbb{R}^{2} such that $T^{*} T\left(v_{1}\right)=3 v_{1}$ and $T^{*} T\left(v_{2}\right)=$ $2 v_{2}$. Setting $\lambda_{1}=3>2=\lambda_{2}$, we obtain $\sigma_{1}=\sqrt{3}$ and $\sigma_{2}=\sqrt{2}$. Let $u_{1}=\frac{1}{\sigma_{1}} T\left(v_{1}\right)=\frac{1}{\sqrt{3}}(1,1,1)$ and $u_{2}=\frac{1}{\sigma_{2}} T\left(v_{2}\right)=\frac{1}{\sqrt{2}}(0,1,-1)$. Conveniently, $\left\{u_{1}, u_{2}, e_{3}\right\}$ is a basis for \mathbb{R}^{3}. Applying the Gram-Schmidt procedure, let

$$
u_{3}=e_{3}-\frac{\left\langle e_{3}, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1}-\frac{\left\langle e_{3}, u_{2}\right\rangle}{\left\|u_{2}\right\|^{2}} u_{2}=e_{3}-\frac{1}{\sqrt{3}} u_{1}+\frac{1}{\sqrt{2}} u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

Then setting $u_{3}=\frac{1}{\sqrt{6}}(-2,1,1)$ gives us an orthonormal basis $\gamma=\left\{u_{1}, u_{2}, u_{3}\right\}$ for \mathbb{R}^{3}. Let $\beta=\left\{v_{1}, v_{2}\right\}$. Then

$$
[T]_{\beta_{2}}^{\beta_{3}}=[I]_{\gamma}^{\beta_{3}}[T]_{\beta}^{\gamma}[I]_{\beta_{2}}^{\beta}=[I]_{\gamma}^{\beta_{3}}[T]_{\beta}^{\gamma}\left([I]_{\beta}^{\beta_{2}}\right)^{*}=U D V^{*},
$$

where

$$
U=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6}
\end{array}\right] \quad D=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & \sqrt{2} \\
0 & 0
\end{array}\right] \quad V=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

4.8.9 Definition. Let $A \in M_{m \times n}(F)$. The singular values of A are the singular values of $L_{A}: F^{n} \rightarrow F^{m}$.
4.8.10 Theorem (Singular Value). Let $A \in M_{m \times n}(F)$. Let $\operatorname{rank}(A)=r$. Say the singular values of A are $\sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{r}>0$. Then there exist unitary $U \in M_{m}(F)$ and unitary $V \in M_{n}(F)$ such that $A=U D V^{*}$, where $D=\left(d_{i j}\right)$ and

$$
d_{i j}= \begin{cases}\sigma_{i} & i=j \\ 0 & i \neq j\end{cases}
$$

5 Tensors

5.1 Quotient Spaces

5.1.1 Notation. Throughout this section, F denotes an arbitrary field (no longer restricted to \mathbb{R} or \mathbb{C}) and V denotes a vector space over F.
5.1.2 Definition. Let V be a vector space over F. Let $W \leq V, v \in V$. The coset of W in V, containing v, is $v+W:=\{v+w: w \in W\}$. We use the notation $V / W:=\{v+W: v \in V\}$. Additionally, we shall sometimes denote $v+W=\bar{v}$ when the subspace W is clear.

[^3]5.1.3 Remark. Let $W \leq V$. Note that $a+W=b+W \Longleftrightarrow a-b \in W$, and in particular $a+W=$ $0+W \Longleftrightarrow a \in W$.
5.1.4 Proposition. Let $W \leq V$. Then V / W is a vector spaces over F when equipped with the operations
$$
(a+W)+(b+W)=(a+b)+W \quad \alpha(a+W)=(\alpha a)+W
$$

Proof. These operations satisfy the vector space axioms since V is a vector space. We just need to check that they are well-defined. Accordingly, suppose $a, b, a^{\prime}, b^{\prime} \in V$ such that $a+W=a^{\prime}+W$ and $b+W=b^{\prime}+W$. Then $a-a^{\prime} \in W$ and $b-b^{\prime} \in W$, so $(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \in W$, and therefore $(a+b)+W=\left(a^{\prime}+b^{\prime}\right)+W$. Furthermore, $\alpha a-\alpha a^{\prime}=\alpha\left(a-a^{\prime}\right) \in W$, so $(\alpha a)+W=\left(\alpha a^{\prime}\right)+W$. Therefore these operations are independent of the choice of coset representative, so we're done.
5.1.5 Example. In $P_{3}(\mathbb{R}) / P_{2}(\mathbb{R}), \overline{6 x^{3}-5 x^{2}+2 x-1}=\overline{6 x^{3}}$.
5.1.6 Definition. Let V, W be vector spaces over F. We say that V and W are isomorphic and write $V \cong W$ when there exists an invertible linear transformation $T: V \rightarrow W$. We call such an invertible linear transformation an isomorphism.
5.1.7 Theorem (First Isomorphism Theorem for Vector Spaces). Let V, W be vector spaces over F. Let $T: V \rightarrow W$ be linear. Then $V / \operatorname{Null}(T) \cong T(V) \leq U$ via the isomorphism $\bar{v} \mapsto T(v)$.

Proof. Define $\varphi: V / \operatorname{Null}(T) \rightarrow U$ by $\varphi(\bar{v})=T(v)$. We claim that φ is a well-defined injective linear transformation. Note that if $\bar{u}=\bar{v} \in V / \operatorname{Null}(T)$, then $u-v \in \operatorname{Null}(T)$, so $T(u-v)=0$. Thus $\varphi(\bar{u})=$ $T(u)=T(v)=\varphi(\bar{v})$, so φ is well-defined. Let $\bar{x}, \bar{y} \in V / \operatorname{Null}(T), \alpha \in F$. Then

$$
\varphi(\alpha \bar{x}+\bar{y})=\varphi(\overline{\alpha x+y})=T(\alpha x+y)=\alpha T(x)+y=\alpha \varphi(\bar{x})+\varphi(\bar{y})
$$

so φ is linear. Finally, suppose that $\bar{v} \in \operatorname{Null}(\varphi)$. Then $\varphi(\bar{v})=T(v)=0$, so $v \in \operatorname{Null}(T)=\overline{0}$. Thus φ is injective. It follows that $V / \operatorname{Null}(T) \cong T(V)$, as required.
5.1.8 Example. Let $V=M_{2}(\mathbb{R})$. Let $W=\left\{A \in V: A=A^{T}\right\}$. Then

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+W=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+W
$$

5.1.9 Proposition. Let V be a finite-dimensional vector space over F. Let W be a subspace of V. Say $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a basis for W. Then extend this basis to a basis for $V,\left\{v_{1}, v_{2}, \ldots, v_{m}, v_{m+1}, \ldots, v_{n}\right\}$, where $n=\operatorname{dim} V$. Then $\left\{\overline{v_{m+1}}, \overline{v_{m+2}}, \ldots, \overline{v_{n}}\right\}$ is a basis for V / W. In particular, $\operatorname{dim}(V / W)=\operatorname{dim} V-\operatorname{dim} W$.

Proof. Let $\bar{v}=v+W \in V / W$. Say $v=\sum_{i=1}^{n} a_{i} v_{i}$, where $a_{1}, a_{2}, \ldots, a_{n} \in F$. Then

$$
\bar{v}=\overline{a_{m+1} v_{m+1}+a_{m+2} v_{m+2}+\cdots+a_{n} v_{n}}=a_{m+1} \overline{v_{m+1}}+a_{m+2} \overline{v_{m+2}}+\cdots+a_{n} \overline{v_{n}},
$$

so this set spans V. Now suppose $b_{m+1} \overline{v_{m+1}}+b_{m+2} \overline{v_{m+2}}+\cdots+b_{n} \overline{v_{n}}=0$ for some $b_{m+1}, b_{m+2}, \ldots, b_{n} \in$ F. Then $b_{m+1} v_{m+1}+b_{m+2} v_{m+2}+\cdots+b_{n} v_{n} \in W$, so $b_{m+1}=b_{m+2}=\cdots=b_{n}=0$. Therefore $\left\{\overline{v_{m+1}}, \overline{v_{m+2}}, \ldots, \overline{v_{n}}\right\}$ is a linearly independent spanning set, i.e., a basis, for V / W.

5.2 Tensor Products

5.2.1 Example. Let $(a, b) \in \mathbb{C}^{2}$. Let $S=\{(a, b)-(b, a): a, b \in \mathbb{C}\}$ and let $W=\operatorname{Span}(S)$. In \mathbb{C}^{2} / W, $\overline{(a, b)-(b, a)}=\overline{0}$, so $\overline{(a, b)}=\overline{(b, a)}$.
5.1 Remark. Similarly to the above example, our goal is to turn a vector space V into a ring $(T(v),+, \otimes)$ with an additional bilinear scalar multiplication operation.
5.2.2 Definition. Let X be a set of algebraically independent symbols. We define the free vector space on X over F by

$$
V=\operatorname{Free}(X)=\left\{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}: \alpha_{i} \in F, x_{i} \in X\right\}
$$

with addition defined by $\sum \alpha_{i} x_{i}+\sum \beta_{i} x_{i}=\sum(\alpha+\beta) x_{i}$ and scalar multiplication by $\lambda \sum \alpha_{i} x_{i}=\sum \lambda_{i} \alpha_{i} x_{i}$.
5.2.3 Example. Let $F=\mathbb{R}$ and $X=\{\star, \natural, \odot\}$. Then in $\operatorname{Free}(X)$,

$$
\left(-\star+2 \natural-\frac{15}{2} \odot\right)+\left(2 \star-2 দ+\frac{1}{2} \odot\right)=\star+0 \natural-7 \odot,
$$

which we denote simply by $\star-7 \odot$.
5.2.4 Remark. By construction, X is a basis for $\operatorname{Free}(X)$.
5.2.5 Definition. Let V, W be finite-dimensional vector spaces over F. Let $X=V \times W$, treated as a set of symbols. Let S be the set of vectors in $\operatorname{Free}(X)$ of one of the forms

- $(x+y, z)-(x, z)-(y, z)$
- $(z, x+y)-(z, x)-(x, y)$
- $\alpha(x, y)-(\alpha x, y)$
- $\alpha(x, y)-(x \alpha y)$.

We define the tensor product of V and W to be $V \oplus W: \operatorname{Free}(X) / \operatorname{Span}(S)$.
5.2.6 Notation. In $V \otimes W$, we denote $\overline{(v, w)}=v \otimes w$. Elements of this form are called pure tensors.
5.2.7 Remark. In $V \otimes W$, note that $(v+w) \otimes z-v \otimes z-w \otimes z=0 \otimes 0=0$. Therefore $(v+w) \otimes z=v \otimes z+w \otimes z$. Also, $\alpha(v \otimes w)=(\alpha v) \otimes w=v \otimes(\alpha w)$.
5.2.8 Example. Consider $\mathbb{C}^{2} \otimes_{\mathbb{C}} \mathbb{C}^{3}$. (This notation means that we are using the field of scalars \mathbb{C}.) Let the standard bases for \mathbb{C}^{2} and \mathbb{C}^{3} be $\sigma_{2}=\left\{a_{1}, a_{2}\right\}$ and $\sigma_{3}=\left\{b_{1}, b_{2}, b_{3}\right\}$ respectively. Then

$$
\begin{aligned}
(1,2) \otimes(1,2,3) & =\left(a_{1}+2 a_{2}\right) \otimes\left(b_{1}+2 b_{2}+3 b_{3}\right) \\
& =a_{1} \otimes\left(b_{1}+2 b_{2}+3 b_{3}\right)+2\left(a_{2} \otimes\left(b_{1}+2 b_{2}+3 b_{3}\right)\right) \\
& =\left(a_{1} \otimes b_{1}\right)+2\left(a_{1} \otimes b_{2}\right)+3\left(a_{1} \otimes b_{3}\right)+2\left(a_{2} \otimes b_{1}\right)+4\left(a_{2} \otimes b_{2}\right)+6\left(a_{2} \otimes b_{3}\right) .
\end{aligned}
$$

5.2.9 Proposition. Let V, W be finite-dimensional vector spaces over F. Suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ are bases for V and W respectively. Then a basis for $V \otimes_{F} W$ is

$$
\left\{v_{i} \otimes w_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}
$$

In particular, $\operatorname{dim}_{F}\left(V \otimes_{F} W\right)=n m=\operatorname{dim}_{F}(V) \operatorname{dim}_{F}(W)$.
5.2.10 Theorem (Universal Property of Tensor Products). Let V, W, Z be vector spaces over some field F. Let $\varphi: V \times W \rightarrow Z$ be bilinear. Then there exists a unique linear transformation $T: V \otimes W \rightarrow Z$ defined by $T(v \otimes w)=\varphi(v, w)$. Moreover, all linear transformations $V \otimes W \rightarrow Z$ can be constructed in this way.
5.2.11 Remark. Let V be a finite-dimensional vector space over F. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V. For each $1 \leq i \leq n$, define $v_{i}^{*}: V \rightarrow F$ by $v_{i}^{*}\left(v_{j}\right)=\delta_{i j}$ for $1 \leq j \leq n$. Then $\left\{v_{1}^{*}, v_{2}^{*}, \ldots, v_{n}^{*}\right\}$ is a basis for V^{*}.
5.2.12 Notation. Let V, W be finite-dimensional vector spaces over F. We denote the collection of linear transformations from V to W by $L(V, W)$. Note that $L(V, W)$ is a vector space over F.
5.2.13 Example. Let V, W be finite-dimensional vector spaces over F. We show that $V^{*} \otimes_{F} W \cong L(V, W)$.

Define $\varphi: V^{*} \times W \rightarrow L(V, W)$ by $\varphi(f, w)(v)=f(v) w$, where $v \in V$ is arbitrary. Confirm that φ is bilinear and well-defined. By the Universal Property, there is a linear transformation $T: V^{*} \otimes_{F} W \rightarrow L(V, W)$ such that $T(f \otimes w)=\varphi(f, w)$. We will show that T is an isomorphism by explicitly constructing its inverse.

Let $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be a basis for W. Define a basis for W^{*} by $\left\{w_{1}^{*}, w_{2}^{*}, \ldots, w_{m}^{*}\right\}$ as in Remark 5.2.11. Define $U: L(v, w) \rightarrow V^{*} \otimes_{F} W$ by $U(F)=\sum_{i=1}^{m}\left(w_{i}^{*} \circ F\right) \otimes w_{i}$. Let $v \in V$. Say $F(v)=\sum_{i=1}^{m} \alpha_{i} w_{i}$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in F$. Then

$$
(T U)(F)(v)=T\left(\sum_{i=1}^{m}\left(w_{i}^{*} F\right) \otimes w_{i}\right)(v)=\sum_{i=1}^{m} w_{i}^{*}(F(v)) w_{i}=\sum_{i=1}^{m} w_{i}^{*}\left(\sum_{j=1}^{m} \alpha_{j} w_{j}\right) w_{i}=\sum_{i=1}^{m} \alpha_{i} w_{i}=F(v)
$$

so $U=T^{-1}$, and therefore T is an isomorphism, as claimed.

5.3 Tensor and Exterior Algebras

5.3.1 Definition. Let F be a field. An F-algebra is a vector space A over F equipped with a multiplication map $\cdot: A \times A \rightarrow A$ such that

- $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- $a \cdot(b+c)=a \cdot b+a \cdot c$
- $(a+b) \cdot c=a \cdot c+b \cdot c$
- $\alpha(a \cdot b)=(\alpha a) \cdot b=a \cdot(\alpha b)$
for all $a, b, c \in A, \alpha \in F$.
5.3.2 Definition. Let V be a vector space over F. For $k \in \mathbb{N}$, we define $T^{k}(V)=\bigotimes_{i=1}^{k} V$. Elements of $T^{k}(V)$ are called k-tensors. We also define $T^{0}(V)=F$.
5.3.3 Aside. Let V be a vector space over F. Let $W_{1}, W_{2}, W_{3}, \ldots \leq V$. We define the direct product of $W_{1}, W_{2}, W_{3} \ldots$ to be

$$
\prod_{i=1}^{\infty} w_{i}=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in W_{i}\right\}
$$

and the direct sum of $W_{1}, W_{2}, W_{3} \ldots$ to be

$$
\bigoplus_{i=1}^{\infty} W_{i}=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right): a_{i} \in W_{i}, a_{i}=0 \text { for all but finitely many } i\right\}
$$

We denote $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in \bigoplus_{i=1}^{\infty} W_{i}$ by $a_{1}+a_{2}+a_{3}+\cdots$. Note however, that this is notation only; we are not using addition in V.
5.3.4 Example. For $i=0,1,2, \ldots$, define $W_{i}=\operatorname{Span}_{\mathbb{R}}\left\{x^{i}\right\}$. Then $\bigoplus_{i=1}^{\infty} W_{i}=\mathbb{R}[x]$.
5.3.5 Definition. We define the tensor algebra of V by $T(V)=\bigoplus_{i=0}^{\infty} T^{i}(V)$. Elements of $T(V)$ look like finite linear combinations of k-tensors.
5.3.6 Example. Let $F=\mathbb{R}$ and let V be a vector space over \mathbb{R}. Let $x, y \in V$. Then

$$
3+2(x \otimes y)-\frac{1}{7}(x \otimes x \otimes y)+87(x \otimes x \otimes x \otimes x \otimes x) \in T(V)
$$

5.3.7 Definition. In $T(V)$, multiplication is defined by

$$
\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}\right)\left(u_{1} \otimes u_{2} \otimes \cdots \otimes u_{\ell}\right)=v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k} \otimes u_{1} \otimes u_{2} \otimes \cdots \otimes u_{\ell}
$$

and then extended by distributivity.
5.3.8 Definition. Let V be a vector space over F. Let $A(V)$ in $T(V)$ be the ideal generated by elements of the form $v \otimes v$, where $v \in V$. We define the exterior algebra of V by $\bigwedge(V)=T(V) / A(V)$, equipped with operations given by $\bar{x}+\bar{y}=\overline{x+y}, \alpha \bar{x}=\overline{\alpha x}$, and $\bar{x} \bar{y}=\overline{x y}$ for all $x, y \in T(V), \alpha \in F$.
5.3.9 Notation. In $\bigwedge(V)$, we denote $\overline{v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k}}$ by $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$.
5.3.10 Example. In $\bigwedge(V)$,

$$
0=(x+y) \wedge(x+y)=x \wedge x+x \wedge y+y \wedge x+y \wedge y=x \wedge y+y \wedge x
$$

so $x \wedge y=-(y \wedge x)$. Similarly, $a \wedge b \wedge c \wedge a \wedge e=0$. Note that $0 \otimes v=0(0 \otimes v)=0$ for any $v \in V$.

6 Functional Analysis

6.1 Definition. Let $(V,\|\cdot\|)$ be a normed vector space.
(1) We say that a sequence $\left(x_{n}\right)$ in V converges to $x \in V$, denoted $x_{n} \rightarrow x$, if for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}, n \geq N \Longrightarrow\left\|x_{n}-x\right\|<\varepsilon$.
(2) We say that a sequence $\left(x_{n}\right)$ in V is Cauchy if for all $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n, m \in \mathbb{N}, n, m \geq N \Longrightarrow\left\|x_{n}-x_{n}\right\|<\varepsilon$.
(3) We say that V is complete if every Cauchy sequence in V converges in V.
(4) If V is complete, we call it a Banach space.
(5) If V is a Banach Space and the norm on V is defined by $\|v\|=\sqrt{\langle v, v\rangle}$ for some inner product $\langle\cdot, \cdot\rangle$ on V, we call V a Hilbert space.
6.2 Example. $\left(\mathbb{R}^{n},\|\cdot\|\right)$ and $\left(\mathbb{C}^{n},\|\cdot\|\right)$ are Hilbert spaces. In fact, they are the only finite-dimensional Hilbert spaces, up to isomorphism.
6.3 Definition. Define

$$
\begin{aligned}
c_{00} & =\left\{\left(x_{n}\right)_{n=1}^{\infty}: x_{n} \in \mathbb{R}, x_{n}=0 \text { for all but finitely many } n \in \mathbb{N}\right\} \\
c_{0} & =\left\{\left(x_{n}\right)_{n=1}^{\infty}: x_{n} \in \mathbb{R}, \lim _{n \rightarrow \infty} x_{n}=0\right\}
\end{aligned}
$$

A norm on c_{00} and c_{0} is given by $\left\|\left(x_{n}\right)\right\|_{\infty}=\max _{n \in \mathbb{N}}\left\{\left|x_{n}\right|\right\}$.
6.4 Example. Let $x_{n}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, 0,0, \ldots\right)$. We claim that $\left(x_{n}\right) \in c_{00}$ is Cauchy. Accordingly, let $\varepsilon>0$. Choose $n \in \mathbb{N}$ such that $\frac{1}{N}<\varepsilon$. Suppose $n, m \geq N$; without loss of generality assume $n<m$. Then

$$
\left\|x_{n}-x_{m}\right\|_{\infty}=\frac{1}{n+1}<\frac{1}{n} \leq \frac{1}{N}<\varepsilon
$$

However, it is clear that $x_{n} \rightarrow x$, where $x=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \notin c_{00}$. By the uniqueness of limits, it follows that c_{00} is not a Banach space.
6.5 Example. $\left(c_{0},\|\cdot\|_{\infty}\right)$ is a Banach space, for reasons apparent from the preceding example.
6.6 Definition. Define

$$
\ell^{\infty}=\left\{\left(a_{n}\right)_{n=1}^{\infty}: a_{n} \in \mathbb{R}, \sup _{n \in \mathbb{N}}\left|a_{n}\right|<\infty\right\}
$$

A norm on ℓ^{∞} is given by $\left\|\left(a_{n}\right)\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left\{\left|a_{n}\right|\right\}$.
6.7 Example. We claim that $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space. Let $\left(x_{n}\right)$ be a Cauchy sequence in ℓ^{∞}. We write

$$
x_{n}=\left(x_{n}^{(1)}, x_{n}^{(2)}, x_{n}^{(3)}, \ldots\right) .
$$

Let $\varepsilon>0$. Then there exists $N_{1} \in \mathbb{N}$ such that $\left\|x_{n}-x_{m}\right\|_{\infty}<\frac{\varepsilon}{2}$ for $n, m \geq N_{1}$. Then for every $i \in \mathbb{N}$, for $n, m \geq N_{1}$, we have

$$
\left|x_{n}^{(i)}-x_{m}^{(i)}\right| \leq\left\|x_{n}-x_{m}\right\|_{\infty}<\frac{\varepsilon}{2}<\varepsilon .
$$

Therefore the component sequences are Cauchy, hence convergent. Say each $\left(x_{n}^{(i)}\right)$ converges to a_{i} as $n \rightarrow \infty$.
Let $x=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. We claim that $x \in \ell^{\infty}$. Note that there exists $N_{2} \in \mathbb{N}$ such that $\left\|x_{n}-x_{m}\right\|_{\infty}<1$ for $n, m \geq N_{2}$. Then for $n, m \geq N_{2}, i \in \mathbb{N}$,

$$
\left|x_{n}^{(i)}-x_{m}^{(i)}\right| \leq\left\|x_{n}-x_{m}\right\|_{\infty}<1 .
$$

Now,

$$
\left|x_{n}^{(i)}-a_{i}\right|=\lim _{m \rightarrow \infty}\left|x_{n}^{(i)}-x_{m}^{(i)}\right| \leq 1,
$$

so for $n \geq N_{2}$,

$$
\sup _{i \in \mathbb{N}}\left|a_{i}\right|=\sup _{i \in \mathbb{N}}\left|a_{i}-x_{n}^{(i)}+x_{n}^{(i)}\right| \leq \sup _{i \in \mathbb{N}}\left\{\left|a_{i}-x_{n}^{(i)}\right|+\left|x_{n}^{(i)}\right|\right\} \leq 1+\left\|x_{n}\right\|_{\infty}<\infty
$$

Therefore $x \in \ell^{\infty}$.
Now claim that $x_{n} \rightarrow x$. For $i \in \mathbb{N}, n, m \geq N_{1}$,

$$
\left|x_{m}^{(i)}-x_{n}^{(i)}\right| \leq\left\|x_{m}-x_{n}\right\|_{\infty}<\frac{\varepsilon}{2}
$$

Then

$$
\left|x_{m}^{(i)}-a_{i}\right|=\lim _{n \rightarrow \infty}\left|x_{m}^{(i)}-x_{n}^{(i)}\right| \leq \frac{\varepsilon}{2}
$$

For $m \geq N_{1}$,

$$
\left\|x_{m}-x\right\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{m}^{(i)}-a_{i}\right| \leq \frac{\varepsilon}{2}<\varepsilon
$$

Therefore $x_{n} \rightarrow x$. It follows that $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space.
6.8 Remark. A closed subset of a Banach space is also a Banach space.
6.9 Example. $c_{0} \subseteq \ell^{\infty}$ is a Banach space.
6.10 Definition. Let $p \in[1, \infty)$. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence in \mathbb{R}. Define the $\|\cdot\|_{p}$ to be

$$
\left\|\left(a_{n}\right)\right\|_{p}=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

Define $\ell^{p}=\left\{\left(a_{n}\right)_{n}:\left\|\left(a_{n}\right)\right\|_{p}<\infty\right\}$.
6.11 Fact. $\left(\ell^{p},\|\cdot\|_{p}\right)$ is a Banach space. When $p=2$, ℓ^{2} is a Hilbert space, where $\left\langle\left(a_{n}\right),\left(b_{n}\right)\right\rangle=\sum_{n=1}^{\infty} a_{n} b_{n}$.
6.12 Fact. Let $(V,\|\cdot\|)$ be a normed vector space. Then the parallelogram law holds in V if and only if $\|\cdot\|$ is induced by an inner product.
6.13 Example. We claim that ℓ^{∞} is not a Hilbert space. Let $x=(1,0,0, \ldots), y=(0,1,0, \ldots)$. Then

$$
\|x+y\|_{\infty}^{2}+\|x-y\|_{\infty}^{2}=1^{2}+1^{2}=2 \neq 4=2(1+1)=2\left(\|x\|_{\infty}^{2}+\|y\|_{\infty}^{2}\right)
$$

Therefore the parallelogram law does not hold in ℓ^{∞}, so ℓ^{∞} is not a Hilbert space by Fact 6.12 .
6.14 Fact. $\left(\ell^{p},\|\cdot\|_{p}\right)$ is a Hilbert space if and only if $p=2$.
6.15 Remark. Using the same x, y as in Example 6.13, but in ℓ^{p} instead of ℓ^{∞}, we have

$$
\|x+y\|_{p}^{2}+\|x-y\|_{p}^{2}=\left(1^{p}+1^{p}\right)^{\frac{2}{p}}+\left(1^{p}+1^{p}\right)^{\frac{2}{p}}=2^{\frac{2}{p}+1}
$$

while

$$
2\left(\|x\|_{p}^{2}+\|y\|_{p}^{2}\right)=2(1+1)=4
$$

Clearly equality does not hold unless $p=2$, which gives some insight into Fact 6.14.
6.16 Definition. Let V, W be normed vector spaces. Let $T: V \rightarrow W$ be linear. We say that
(1) T is continuous at $v \in V$ if for all $\varepsilon>0$, there exists $\delta>0$ such that for all $x \in V$,

$$
\|x-v\|<\delta \Longrightarrow\|T(x)-T(v)\|<\varepsilon
$$

(2) T is continuous if it is continuous at every $v \in V$.
(3) T is bounded if there exists $C \geq 0$ such that $\|T(x)\| \leq C\|x\|$ for all $x \in V$.
6.17 Theorem. Let V, W be normed vector spaces. Let $T: V \rightarrow W$ be linear. The following are equivalent:
(1) T is continuous.
(2) T is continuous at 0 .
(3) T is bounded.
(4) $n_{1}=\sup \{\|T(x)\|:\|x\| \leq 1\}<\infty$.
(5) $n_{2}=\sup \{\|T(x)\|:\|x\|=1\}<\infty$.

Proof. (1) \Rightarrow (2) Trivial.
$(2) \Rightarrow(3)$ Suppose T is continuous at 0 . Then there exists $\delta>0$ such that $\|x\|<\delta \Longrightarrow\|T(x)\|<1$. For $0 \neq x \in V$,

$$
\frac{\delta}{2\|x\|}\|T(x)\|=\left\|T\left(\frac{\delta}{2\|x\|} x\right)\right\|<1
$$

since $\left\|\frac{\delta}{2\|x\|} x\right\|<\delta$. Therefore

$$
\|T(x)\|<\frac{2}{\delta}\|x\|
$$

so we set $C=\frac{2}{\delta}$ and the result follows.
(3) \Rightarrow (4) Suppose T is bounded. Say $\|T(x)\| \leq C\|x\|, C \geq 0$. Then for $x \in V$ with $\|x\| \leq 1$, $\|T(x)\| \leq C\|x\| \leq C$, so $n_{1} \leq C<\infty$.
(4) \Rightarrow (5) Trivial.
(5) \Rightarrow (1) Suppose $n_{2}<\infty$. Let $v \in V$. Let $\varepsilon>0$. Choose $\delta=\frac{\varepsilon}{n_{2}+1}$. Suppose $x \in V$ with $\|x-v\|<\delta$. If $x=v$ then $\|T(x)-T(v)\|=0<\varepsilon$. Otherwise,

$$
\|T(x)-T(v)\|=\|T(x-v)\|=\left\|T\left(\frac{x-v}{\|x-v\|}\right)\right\|\|x-v\| \leq n_{2}\|x-v\|<n_{2} \delta<\varepsilon
$$

so T is continuous. This completes the proof.
6.18 Remark. Suppose $T: V \rightarrow W$ is continuous and n_{1}, n_{2} are defined as in Theorem 6.17. Clearly $n_{2} \leq n_{1}$. If $x \in V$ with $0<\|x\| \leq 1$, we have

$$
\left\|T\left(\frac{x}{\|x\|}\right)\right\|=\frac{1}{\|x\|}\|T(x)\| \leq n_{2}
$$

so $\|T(x)\| \leq n_{2}\|x\| \leq n_{2}$. Therefore $n_{1} \leq n_{2}$, so $n_{1}=n_{2}$. We can use n_{2} to define the operator norm given by

$$
\|T\|=\sup _{\|x\|=1}\|T(x)\|
$$

This completes the course.

[^0]: ${ }^{1}$ Data fabricated for the purpose of this example.

[^1]: ${ }^{2}$ Corollary 4.5 .4 was presented on June 17, before the proof of Schur's Theorem.

[^2]: ${ }^{3}$ Corollary 4.5.8 and Example 4.5.9 were presented on June 19, before the proof of Theorem 4.5.7.

[^3]: ${ }^{4}$ Definition 4.8 .7 was presented on July 8, before the proof of the Singular Value Decompositionl Theorem.
 ${ }^{5}$ We avoid using σ_{i} to avoid confusion with singular values.

