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1 Rings and Fields

1.1 Definition. A ring is a set R equipped with the operations +: R x R — R and -: R X R — R such that
for all a,b,c € R, (a+b) +c=a+ (b+ c¢);
for all a,b,c € R, (a-b)-c=a-(b-c);

(1)

(2)

(3) foralla,be R, a+b=>b+q;

(4) there exists 0 € R such that a + 0 =0+ a = a for all a € R;

(5) for all @ € R, there exists b € R such that a + b = 0 (we denote this b by —a);
(6) For all a,b,ce R,a-(b+c¢)=a-b+a-cand (b+c¢)-a=b-a+c-a.

1.2 Notation. The above axioms allow the the following notation.

(1) +(a,b) =a+band -(a,b) =a-b=ab.

(2) By associativity, a + b+ ¢ and abc are well-defined.

(3)

ForneN,a":=qaa---aand na:==a+a+---+a.

n times n times
4) a+(-b)=a—b.
1.3 Example. The following are rings:
(a) Z, Q, R, and C
(b) Z,, forn e N
(¢) R[z] and M, (R) for any ring R
(d) Ry @ Ry :={(a,b) : a € R1,b € Ry} for any rings Ry and Ra.
1.4 Example. The following are not rings:
(a) the odd numbers, since there is no 0 element
(b) C(R) under pointwise addition and function composition, since distributivity breaks.
1.5 Definition. We also consider two special types of rings.

(1) We say a ring R is commutative if ab = ba for all a,b € R.

(2) We say aring R is unital if there exists 1 € R such that la = al = a for all a € R. We call 1 the unity,
or “one,” of R.

1.6 Example. 27 is a non-unital, commutative ring. M,,(2Z) is a non-unital, non-commutative ring.

1.7 Convention. Only the trivial ring is allowed to have trivial multiplication, i.e., ab = 0 for all a,b € R.
Furthermore, the trivial ring is not unital.

1.8 Definition. Let R be a commutative ring. We say a € R is a zero divisor if a # 0 and there exists
b # 0 such that ab = 0.

1.9 Example. In Zg, 2 and 3 are zero divisors, since 2 -3 = 0.
1.10 Remark. For any a € Z,, a is a zero divisor if and only if ged(a,n) # 1 and a # 0.
1.11 Definition. A ring R is an integral domain if R is commutative and unital and has no zero divisors.

1.12 Example. The following are integral domains:

May 6
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b
(c

1.13 Example. The following are not integral domains:

(
(

(a) Z,Q, R, C
(b) Z,, where p is prime

) R|x] for any integral domain R.
a) Znp, where n > 1 is not prime (zero divisors)
b) M,(R), where n > 1 (not commutative)
(c) 2

(d) R@R (zero divisors).

Z (not unital)

1.14 Proposition. Let R be an integral domain. If a,b,c € R with a # 0 and ab = ac, then b = c.

Proof. Since ab = ac, ab— ac =0, so a(b—¢) = 0. Since a # 0 and R is an integral domain, we must have
b—c=0,ie,b=c. ]

1.15 Remark. The above is true in any commutative ring when a is not a zero divisor.

1.16 Definition. Let R be a commutative, unital ring. We say a € R is a unit (or is invertible) if there
exists b € R such that ab = 1. We call b the inverse of a and write b = a~!. We denote the set (group) of
units of R by R* or U(R).

1.17 Example. Let 1 <n € Z.

(a) If n is prime, then U(Z,) = Z, \ {0}.

(b) In general, ZX = {a € Z,, : ged(a,n) = 1}.
1.18 Remark. If a € R, then a is not a zero divisor, since a # 0 and ab = 0 implies a " 'ab =0, i.e., b= 0
1.19 Definition. A ring F is a field if F' is commutative and unital and every non-zero element is a unit.
1.20 Example. The following are fields:

(a) Z,, where p is prime

(b) Q, R, C

(c) Q(v2)

(d) F(x), the set of rational functions over F, where F is a field.
1.21 Proposition. Every field is an integral domain.

Proof. If F is a field, then F' is commutative and unital by definition. Furthermore, since every non-zero
element is a unit, F' has no zero divisors by 1.18. Thus F' is an integral domain. el

1.22 Remark. The converse of 1.21 is not true: Z and F[z] for any field F' are integral domains but not
fields.

1.23 Definition. Let R be a unital ring. We define the characteristic of R to be the least positive integer
n such that n = 0 in R. That is,
n=n-1=1+14+---4+1=0.
n times

If no such n exists, we say that R has characteristic 0. Our notation is char(R) = 0 or char(R) = n.

1.24 Example. If R = Z4[z], then char(R) = 4.
1.25 Remark. Let R be a ring with characteristic 0. Then each of 1,2, 3, ... is distinct, and thus R is infinite.
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1.26 Proposition. If R is an integral domain, then char(R) = 0 or char(R) = p, where p is prime.

Proof. If char(R) = n # 0 and n is not prime, then n = ab when a,b < n, and thus ab =0 in R. But R has
not zero divisors, so n must be either 0 or prime. H

1.27 Example. If R = Z,(x), then char(R) = p.
1.28 Definition. Let (R, +,-) be a ring. We say that S C R is a subring of R if (S,+,-) forms a ring,.
1.29 Example. Z, Q, R, and Q(ﬁ) are all subrings of C.

1.30 Proposition (Subring Test). Let R be a ring and let & # S C R. Then S is a subring of R if and
only if

(1) foralla,be S, a—be S
(2) foralla,be S, abe S.

Proof. Clearly if S is a subring of R, then conditions (1) and (2) hold. Conversely, suppose conditions (1)
and (2) hold. Let a,b € S. Then 0 = a—a € S, s0 0 € S. Additionally, 0 — b = —b € S, so S contains
additive inverses. Finally, a + b =a — (=b) € S and ab € S, so S is closed under the operations of R. i)

1.31 Example. We claim that Q(v2) = {a+bv2 : a,b € Q} is a subfield of R. Indeed, Q(v/2) is a subring
of R by the subring test, and for any 0 # a + bv/2 € Q(ﬂ),

1 a—bV2
(a+b\/§) Zm-

Note that a® — 2b% # 0 by the irrationality of /2.

1.32 Definition. Let R be a ring. A subring I of R is an ideal of Rif foralla € I, r € R, ar,ra € 1.
1.33 Example. nZ is an ideal of Z.

1.34 Example. Let R = C(R). Then I = {f(z) € R: f(2) =0} is an ideal of R.

1.35 Example. R is a subring of C but not an ideal.

1.86 Remark. If F is a field, then the only ideals of F' are {0} and F.

1.37 Definition. Let R be a commutative, unital ring. The ideal (z) := {rz : r € R} is called the principal
ideal of R generated by x.

1.38 Proposition (Division Algorithm). Let F' be a field. For all f(x),g(x) € Flx] with g(x) # 0, there
exist unique q(x),r(x) € Flx] such that f(x) = g(x)q(x) + r(z), where r(z) =0 or degr(x) < degg(z).

Proof. MATH 145. H
1.39 Proposition. Let F' be a field. Every ideal of F is principal.

Proof. Let I be an ideal of Flz]. If I = {0}, then I = (0). Otherwise, let g(z) € I be nonzero of minimal
degree in I. We claim that I = (g(z)).

Clearly (g(x)) C I. We now show that I C (g(z)). Let f(x) € I. By the Division Algorithm, there
exist g(x),r(z) € Flz] so that f(zr) = g(z)g(z) + r(z), where r(z) = 0 or degr(z) < degg(x). But
r(z) = f(z) — g(x)q(x), and f(x),g(x)q(z) € I, so degr(x) > degg(x) by minimality. Thus r(z) = 0, so
f(x) = g(x)q(z) € (g(x)). Hence I C (g(x)), and in fact I = (g(z)). XE!

May 10
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2 Polynomials of Linear Operators
2.1 Notation. Throughout this section, unless otherwise stated, F' is a field and V is a finite-dimensional
vector space over F'.

2.2 Definition. For A € M, (F), the characteristic polynomial of A is det(A — zI). For T: V — V, the
characteristic polynomial of T is det([T']g — xI), where /3 is any basis for V.

2.3 Definition. Let T be a linear operator. We say a subspace W <V is T-invariant if T(W) C W.
2.4 Remark. If W is T-invariant, then Ty : W — W is well-defined.
2.5 Example. Consider T: R? — R?, T'(z,y) = (z +2y,4y — z). Then W = {(z,z) : z € R} is T-invariant.

2.6 Example. Let T: V — V be a linear operator, and let A be an eigenvalue for T. If v € FE), then
T(T(v)) =T(A(v)) = A\T'(v), so T(v) € Ex. Thus E) = {v € V : T(v) = A} is T-invariant.

2.7 Definition. Let T: V — V be a linear operator. Let 0 # = € V. The subspace
Wr, = Span {z,T(z),T*(z),...}

is called the T-cyclic subspace generated by x.

2.8 Remark. Wr , is the smallest T-invariant subspace of V' containing z.

2.9 Proposition. Let T: V — V be a linear operator. Let W <V be T-invariant. Then the characteristic
polynomial of Ty divides the characteristic polynomial of T

Proof. Let = {v1,v2,...,0n} be a basis for W. Say [Tw]s = A. Extend 3 to a basis

')/:(Ul,'l}g,-..,'Um,’Um+]_,-..,'Un)

- [t

so det(B—xI) = det(A—xT) det(A’—xT). Thus the characteristic polynomial of Ty, divides the characteristic
polynomial of T'.

for V. Say [T], = B. Then

2.10 Proposition. Let T: V — V be a linear operator andv € V # 0. Let W = Wr,,, and say dim W = k.
(1) {v,T(v), T*(v),...,T*"Y(v)} is a basis for W.
(2) If f(z) =2* +ap_12* 1+ -+ @12+ ag € Flx] and f(T)(v) = 0, then the characteristic polynomial
of Ty is (—=1)k f(z).
Proof.

(1) Let j € N be maximal so that 8 = {v,T(v),...,7971(v)} is linearly independent. (Note that since
v # 0, j must exist.) We claim that j = k.

Let U = Span. We will show that U = W. Now, since {v,T(v),...,T97*(v),T?(v)} is linearly
dependent, T7(v) € U. Thus U is T-invariant. Since W = Wy, is the smallest T-invariant subspace
of V' containing v, W C U. But clearly U C W, so U = W, and thus j = k.

(2) From (1), 8 = {v,T(v),...,T*"1(v)} is a basis for W. Moreover, f(T)(v) =0, so
agv + arT(v) 4 -+ + a1 T* 1 (v) + T*(v) = 0,

ie., TF(v) = —apv — a;T(v) — - -+ — ax_1 T* 1 (v). Therefore,
00 --- 0 —ap
10 -+ 0 -a
[Tw]s = 0 1 0 —ao
0 0 -+ 1 —ag_
By Assignment 1, the characteristic polynomial of Ty is (—1)% f(z). i

May 13
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2.11 Theorem (Cayley-Hamilton). If T: V — V is a linear operator and f(x) € Flx] is its characteristic
polynomial, then f(T) = 0.

Proof. Let T: V — V be a linear operator and f(z) € F[z] be its characteristic polynomial. Since f(T) is
linear, f(T)(0) =0. Let 0 # v € V. We claim that f(T)(v) = 0.

Let W = Wr, and say dimW = k. Since {v,T(v),...,Tkil} is a basis for W by 2.10, the set
{v, T(v),...,T*Y(v), Tk (v)} is linearly dependent. Thus there exist ay,...,ax € F, not all 0, such that

agv + a1 T(v) + -+ + a1 T 1 (v) + axT*(v) = 0.

We may assume without loss of generality that a, = 1. Let g(z) = 2% + ap_12*~! + -+ + a2 + ag, so that
g(T)(v) = 0. Since degg(z) = k, the characteristic polynomial of Ty is h(x) = (=1)*g(z) by 2.10. Since
h(z)|f(z) by 2.9 and h(T)(v) = (—1)*g(T)(v) = 0, it follows that f(T)(v) = 0. Thus f(T) = 0.

2.12 Remark. Let T: V — V be a linear operator. I = {f(x) € Flz] : f(T) = 0} is an ideal of F[x] and
hence a principal ideal generated by some polynomial of least degree in I. Note that if a(x),b(z) € F[z] and
(a(z)) = (b(x)), then a(x) = cb(x) for some 0 # ¢ € F. Thus there is only one monic polynomial of least
degree in I, i.e., only one monic m(x) such that I = (m(x)).

2.13 Definition. We call the polynomial m(z) from 2.12 the minimal polynomial for T

2.14 Remark. Suppose f(z) € Flz] such that f(T) = 0. Then m(z)|f(z). In particular, m(x) divides the
characteristic polynomial of T' by the Cayley-Hamilton Theorem.

2.15 Remark. We similarly define the minimal polynomial of A € M,,(F) to be the unique monic m(x) of
least degree such that m(A) = 0.

2.16 Proposition. Let T: V — V be a linear operator with minimal polynomial m(x) and characteristic
polynomial f(x). Then m(x) and f(x) have the same roots in F.

Proof. First note that since m(x)|f(z), every root of m(x) is a root of f(x). If T has no eigenvalues, then f(x)
is irreducible, and thus f(x) = (—1)*m(x), and obviously every root of f(x) is a root of m(x). Otherwise,
let A be an eigenvalue of T. We claim that m(\) = 0.

Let 0 # v € V be an eigenvector for A. Then m(A)v = m(Av) = m(T(v)) = m(T)(v) = 0(v) = 0. Since
v #£ 0, it follows that m(X) = 0. Thus every root of f(z) is a root of m(z), and we’re done. !

2.17 Example. Let V = P(R) = {f(z) € Rlz] : deg f(z) < 2}. Consider T: V — V, T(g(z)) =
g (x) +2g(x). Let 8 = {1,2,2%} be a basis for V. Then T'(1) = 2, T(z) = 1+ 2z, and T'(2?) = 2z + 222, so

2 1 0
A=[Tlz=10 2 2
00 2

Thus the characteristic polynomial of T is —(x — 2)3. The minimal polynomial m(z) of T must be x — 2,
(x —2)%, or (z — 2)3. Note that A — 21 # 0, and

2

010 0 0 2
(A-20)*=10 0 2| =[0 0 0| #0,
0 00 0 00
so m(x) = (v — 2)3.
2.18 Example. Let
3 -1 0
A=10 2 0
1 -1 2

May 15
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Then the characteristic polynomial of A is

3—x -1 0
det(A—zl)=| 0 2—2| 0 |[=0B-2)(2-2)*=—(z—3)(z—2)%
1 -1 [2—2z

So m(z) = (x — 3)(z — 2)2? or (z — 3)(z — 2). But

0 -1 0] [1 -1 0 00 0
(A-—3(A-2)=10 -1 0]-{0 0o ol=|0 0 of,
1 -1 -1 |1 -1 0 00 0

so m(x) = (z — 3)(z — 2).

2.19 Definition. Let T: V — V be a linear operator. We say that V is T-cyclic if there exists 0 £ v € V
such that V = Wr ,,.

2.20 Proposition. Let T: V — V be a linear operator. If dimV = n and V is T-cyclic, then the char-
acteristic polynomial f(x) and the minimal polynomial m(x) for T have the same degree. In particular,

f(@) = (=1)"m(z).

Proof. Suppose V = Wr,, for some 0 # v € V. Recall that {v,T(v),...,T" ! (v)} is a basis for V. Let
g(z) = ap+arz+- - -+apz® € Flz] with ay, # 0 and k < n. Since {v,T(v),...,T*(v)} is linearly independent,
agv + ar T(v) + -+ aTF(v) # 0, i.e., g(T)(v) # 0. Therefore g(T) # 0, and hence degm(z) > n. But
m(x)|f(z), so degm(x) = n, and since m(x) is monic, f(z) = (—1)"m(x). e

2.21 Theorem. Let T:V — V be a linear operator. Then T is diagonalizable if and only if the minimal
polynomial m(x) of T is of the form m(z) = (x — A1)(x — A2) -+ (& — M), where A1, Aay ..., A\ € F are the
distinct eigenvalues of T'.

Proof. (=) Suppose T is diagonalizable. Then let 8 = {v1,vq,...,v,} be a basis of eigenvectors of T for V.
Let p(x) = (x — AM)(z — A2) - - (x — Ar), where A1, Mg, ..., Ap are the distinct eigenvalues of T. We claim
that m(z) = p(x).

Since each eigenvalue is a root of the minimal polynomial of T', p(x)|m(x). Choose v; € 8. Then T'(v;) =
Ajv; for some 1 < j < k. In particular, (T — A;I)(v;) = 0. But then since x — A;|p(z), p(z) = ¢;(x)(x — A;),
where ¢;(z) € Flz]. Then p(T)(v;) = ¢;(T)(T — N\;I)(vi) = ¢;(T)(0) = 0. Since v; € S was arbitrary,
p(T) = 0. Therefore m(z)|p(x). Since p(z) is monic, m(z) = p(x).

(<) Suppose m(z) = (x — A1) (z — A2)(x — M), where A1, Ag, ..., Ay are the distinct eigenvalues of T'. We
proceed by induction on n = dim V.

If n = 1, then T is clearly diagonalizable. If n > 1, assume the result for all vector spaces over F' with
dimension less than n. Let W = Range(T — AI). Now E), = Null(T — A\¢I) # {0}, so dimW < n by the
Rank-Nullity Theorem. Moreover, since T' commutes with both itself and AI, W is T-invariant.

Consider Ty : W — W. Since the minimal polynomial for Ty divides m(z), Tw is diagonalizable by
assumption. Let 8 = {v1,va,...,v} be a basis for W of eigenvectors of Ty,. Let v = {wy,ws,...,ws} be a
basis for Null(T' — A1) = E},.

By the Rank-Nullity Theorem, dimV =n=m + £. Let y € W. Then y = (T — A;)(z) for some z € V.
Then m(T)(x) = (T—MI)(T—X2I)(T—Ae—11I)(y) = 0. Therefore, (Tw —MI)(Tw —A2I) - -« (Tw —Ap—1]) =
0, so the minimal polynomial for Ty divides (z — A1)(z — A2) -+ (x — Ax—1). Hence Ay is not an eigenvalue
of Tyw. Therefore, W N Ey, = &, and in particular W N~y = @. Thus 8 U~ is linearly independent, and
hence 5 U~y is a basis of eigenvectors of T" for V. Thus T is diagonalizable. )

2.22 Example. Let A € M, (C) such that A™ = I. Then m(x)[z™ — 1. But 2™ — 1 has m distinct roots
1,Cm, €2, ¢ where ¢ = €2™/™ 5o m(x) splits over C and has distinct roots over C. By 2.21, A is
diagonalizable.
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3 Jordan Canonical Form

3.1 Generalized Eigenvectors and Eigenspaces

3.1.1 Notation. In keeping with 2.1, throughout this section, F'is a field and V' is a finite-dimensional vector

space over F', unless otherwise stated.

3.1.2 Definition.

(1) Ae M,(F) is a Jordan block if

(2) J € M,(F) is a Jordan matrix if

where Ay, As, ..., Ay are Jordan blocks.

3.1.3 Example.

is a Jordan matrix with Jordan blocks

Ay

O O OO NO

O O OO O

2. | o

Say [T = J, where T: V' — V is a linear operator and 3 = {v1,va, ..

O O Ol =IO

O O Wo oo

o O W

O WO oo

1
3
0

w = o

W= oo OO

.,Ug} is a basis for V. Then we have

i T(v) [(T—20)(v) | (T—20)*;) | (T =3)(v:) | (T =30)*wi) | (T —31)%(vi)
1 2v1 0 0 * * *
2 2U9 0 0 * * *
3 | vg + 2v3 Vg 0 * * *
4 3vy * * 0 0 0
5 | vg + 3us * * Uy 0 0
6 | v5 + 3ug * * U5 V4 0
3.1.4 Example. Suppose T: V — V is a linear operator such that for some basis 5 = {v1, v, ..
have:
i 1 2 3 4 5 6
T(v;) | Buy | 3vg | va + 3vs | v3+ 3vg | 205 | V5 + 206
Then
50 0 0(0 O
03 1 0{0 O
0/{0 3 1|0 O
A=Ts=1010 0 3|0 0
0/0 0 02 1
0/0 O 0|0 2

., V6 ) we

May 24
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Also note that v; € E5 = Null(4 — 5I), va € E3 = Null(4 — 3I), v3 € Null(4 — 31)2, vy € Null(A — 31)3,
Vs € Null(A - 2[), Ve € Null(A — 2])2.

3.1.5 Definition. Let T: V — V be a linear operator whose characteristic polynomial splits over F'. Let A
be an eigenvalue of T

(1) We say that 0 # v € V is a generalized eigenvector of T is (T'— AI)P(v) = 0 for some p € N.
(2) We define Ky :={k eV :3dpeN, (T — A)P(v) = 0} to be the generalzed eigenspace of V.
3.1.6 Remark. Equivalently, K, = (o, Null(T — \I)".

3.1.7 Proposition. Let T: V — V be a linear operator whose characteristic polynomial splits over F' and
A an eigenvalue for T. Then Ky is a T-invariant subspace which contains E.

Proof. Assignment 4. L&)

3.1.8 Proposition. Let T: V — V be a linear operator whose characteristic polynomial splits over F.
Suppose X # 1 be eigenvalues for T. Then T — X : K,, — K,, is one-to-one. In particular, K N K, = {0}.

Proof. Let 0 # « € K, and suppose € E\. Let p € N be minimal so that (T'— pl)?(z) = 0. If p =1,
z € E, soxeE,NE\={0}, and thus z = 0, which is a contradiction.

If p > 1, consider y = (T —ul)P~1(z) # 0. Note that since x € E\ and E is T— and A-invariant, y € E).
Then (T — pl)(y) = (T — pI)P(x) =0, so y € E,. But since y € Ex UE,, y =0, which is a contradiction.
Therefore Null(T'— M) =0, so T — A\I: K, — K, is injective. It follows then that (T' — A\I)?: K, — K, is
injective for all p € N. Thus K,, " Null(T'— XI)? = {0} for all p € N, i.e., K, N K\ = 0.

3.1.9 Proposition. Let T: V. — V be a linear operator whose characteristic polynomial splits over F'.
Suppose X is an eigenvalue for T with multiplicity m. Then dim Ky < m and Ky = Null(T — A\I)™.

Proof. Let W = K and consider Ty : W — W. Let f(x) be the characteristic polynomial of T" and g(x)
the characteristic polynomial of Ty,. Recall that g(x)|f(z). Also, if 4 # X is an eigenvalue of T, then
(T — ul): W — W is injective, if (T — pI)(v) = 0 for some v € W, then v = 0. Thus, the only eigenvalue of
Ty is A. Therefore g(z) = (—1)%(x — \)?, where d = dim W. Since g(z)|f(z), dim W = d < m.

It is clear that W = K, 2 Null(T — AI)™. By the Cayley-Hamilton Theorem, (Ty — AI)? = 0. Let
w € W. Then (Ty — A)™(w) = (T — MX)™(w) = (T — AX)™ 4T — X% (w) = (T — XI)™~4(0) = 0. Hence
W C Null(T' — AI)™, so we're done.

3.1.10 Proposition. Let T: V — V be a linear operator whose characteristic polynomial splits over F. Let
A1, A2, ..., A be the distinct eigenvalues of T'. For all x € V, there exist v € Ky, va € K),,... v, € Ky,
such that x = vy +vg + -+ + V.

Proof. By induction on k. Suppose kK = 1 and A\ = A;. Then the characteristic polynomial for T is
(—=1)4(x — \)4, where d = dim V. By the Cayley-Hamilton Theorem, (T — AI)? = 0. Thus Ky = V, and the
result follows: take z = x.

Inductively, assume the result for operators with fewer than k eigenvalues. Let m be the multiplicity of
Ar and let W = Range(T — A 1)™. Note that W is T-invariant. Recall that for i < k, (T'— Ag): Ky, = K,
is injective, so (T'— Ag)™: Ky, — K\, is injective. In particular, (T'— A I)™(Ky,) C K,,. But dim K, < oo,
so (T — A\ I)™: Ky, — K, is also surjective by the Rank-Nullity Theorem. Thus (T — A1) (Ky,) = K,
so Ky, CW = Range(T — A\ I)™. Thus A1, Ag, ..., Ay—1 are eigenvalues of Ty : W — W. By the argument
in the second half of 2.21, it follows that Ay is not an eigenvalue of Ty,. Let © € V. By assumption, we know
that (T"— A\g)™(x) = w1 +wa + - -+ + wi_1, where w; € K,. Since (T — A\xI)™ is onto, for every w; there
exists v; € K, such that (T' — A\ I)™(v;) = w;. Then

(T = Med)™ (@) = (T = M )™ (1) + -+ + (T = Aed) ™ (vk-1),

)
(T—AkI)m(LL‘—Ul — Vg — "'_kal) ZO,

implying that © — vy — vy — -+ — vy € Null(T — A\pI)™. Thus ¢ = v1 + vo + -+ + vp—_1 + vx for some

vg € Null(T' — A\ I)™ = K. This completes the proof.
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3.1.11 Theorem. Let T: V — V be a linear operator whose characteristic polynomial splits over F. Let
A1, Ao, ..o, A be distinct eigenvalues for T with multiplicities my, ma, ..., my respectively. For each 1 <i <
k, let B; be a basis for Ky,. Then

(1) BiNB; =2 when i # j.
(2) B=PF1UBU---UPy is a basis for V.
(3) dim Ky, = m;.
Proof.
(1) Kx, UKy, = {0} when i # j by 3.1.8, and thus 3; N §; = @.
(2) By (1), S is linearly independent. Also, 5 spans V' by 3.1.10. Thus § is a basis for §.
(3) dimV = |3 ]|€51| + B2 + -+ Bk| <my+mg+ - +my =dimV, and thus m; = |3;| = dim K,

forall 1 <i<k. 15!

3.2 Finding the Jordan Canonical Form of a Matrix

3.2.1 Algorithm. Let T: V — V be a linear operator with characteristic polynomial

k
F(@) = (=) [ = 2™

i=1
(1) Let A = [T],, where o is the standard basis for V, and let J be a Jordan matrix which is similar to A.

(2) Fix A = A;. Compute dy := dim Null(A — A\I) = dim E. Say a basis for Null(A — AI) is ;. Since we
use 71 to make the first columns of the A-Jordan blocks, d; is the number of A-Jordan blocks in J.

(3) Compute dy := dimNull(A — AI)2. We then extend 7; to a basis 72 for Null(A — AI)? by solving
(A—X)x = v for each v € 1. Since we use ¥2 \ y1 to make our second colums, ds — d; is the number
of A-Jordan blocks of size at least 2 x 2.

4) Compute d3 = dim Null(A — AI)3. Then dz — ds is the number of A-Jordan blocks of size at least 3 x 3.
5) Continue in this fashion until dy = m; = dim K, and thus ~y, is a basis for K.

(4)
(5)
(6) Repeat for Ag,...,Agx. If §; is a basis for each K),, then 8 = 8 U Sz U---U Sy is a basis for V.
(7)

7) If the B;s are computed as above, then [T]z = J, and A = PJP~!, where P = [I]g and J is a Jordan
matrix.

3.2.2 Remark. Any J computed in this way is called “the” Jordan Canonical Form of T' (or A). It is unique
up to reordering of the Jordan blocks.

3.2.3 Example. Let

hS
|

3 -2
8 —5|°
Then f(x) = (x +1)%, so A = —1. We have

Null(A — AI) = Null(A + I) = Null ( Ll) _B/ 2} ) = Span ( Fﬂ )

Thus d; =1 and

10
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We now know that

=[]
Solving
(A+ I = H
we get {1/4}
.
Thus
n={ ][5} -2

3.2.4 Example. Let

31 -2
A=|-1 0 5
-1 -1 4|

Then f(z) = —(x —3)(x —2)%,50 Ay =3, \a =2, m; = 1 and my = 2.
A1 =3: Then 1 < dy = dim Null(4 — 37) < 1, so d; = 1 and our Jordan block must be [3].
A2 = 2: Then 1 < dj = dim Null(4 — 27) < 2. Note that

11 -2
A—2[=|-1 -2 5|,
1 -1 2

so inspecting the rows of A — 21 shows that rank(A — 2I) = 2 and hence d; = 1. Thus our Jordan block
must be

and

3 00

J=10 2 1

0 0 2
3.2.5 Example. Let T: P(R) — P»(R), T(f(x)) = 2f(z) — f'(z). Then o = {2?,2,1}. Find a Jordan
Canonical basis for T, i.e., a basis 8 such that [T]g = J.

2 0 O

T, =1(-2 2 0],
0 -1 2

so f(z) = —(z — 2)3. Note that (T —2I)(f(z)) =0 <= 2f(z) — f'(z) —2f(x) =0 < —f'(x) =0,s0 a
basis for Null(T" — 2I) is {1} = {v1} and hence d; = 1. So we must have

J:

S O N
[enl N
N = O

Similarly, (T —2I)(f(z)) =1 < —f'(x) =1, so we can take vo = —z. Finally, (T —2I)(f(x)) = —z <
—f'(z) = —x, so we can take vs = %xQ. Thus (v1,v2,v3) = (1, -, %x2) is a Jordan Canonical basis for T'.
Then [T, = P[T]zP~!, where

0 0 1/2
P=10 -1 0
1 0 0

11
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3.2.6 Example. Let T: M>(R) — M5(R), where

0 1
Then

1 0] [o 1] [o o] [0 O
=%lo ol']o o|l’|t o]']o 1

1010

010 1

[T](T*OOlov

0001

so f(x) = (x—1)*. Then with A = 1, d; = dim Null(4A —I) = 4 —rank(A — I) = 2, so we must have 2 Jordan
blocks. Also, de = dim Null(4A — I)? = dim Null(0) = 4, so d2 —d; = 4 —2 = 2, and thus both Jordan blocks
must be 2 x 2. So,

—~

1100
0 1 0 0
J_0011
0 0 01

3.2.7 Proposition. Let T:V — V be a linear operator with minimal polynomial

k

m(z) = [ J(@ =)™,

=1

where A1, Ao, ..., g are the distinct eigenvalues of T. Then m; is the size of the largest A\;-Jordan block in
the Jordan Canonical Form of T.

Proof. Let [T], = A. Then A = PJP~!, where

J1
Jo

Je
where each J; is a Jordan block corresponding to some eigenvalue for 7'. Then

m(J1)
m(J2)

0=m(J) = . ;
m(Je)
so M(J;) =0 for all i.
Fix A; and let J; be a A;-Jordan block. For any j # ¢, det(J; — A;I) # 0, since A; — A; # 0. Thus
0=m(J;) = (Ji = X)™ [[(Ji = 2™
i

But since det(J; — A;I) # 0 for any j # 4, J; — A1 is invertible for each j # ¢. Thus we must have
(Jz — )\Z‘I>mi = 0. But then

0 1 "
0 1
=0.
0 1
0
Note that if J; — A\ is p X p, then (J; — \;)P = 0. By the minimality of m(z), m; must be the size of the
largest \;-Jordan block.

12
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4 Inner Product Spaces

4.1 Foundations

4.1.1 Convention. Throughout Section 4, we shall use F' to denote either R or C, and V' to denote a (possibly

infinite-dimensional) vector space over F'.

4.1.2 Definition. An inner product on a vector space V is a map (-,-): V x V — F such that for all

z,y,z € V,a € F,

(1) {z+y,2) = (x,2) + (y, 2)
(2) {om,y) = afz,y)

(3) (y,z) = (2,9)

4) (z,2) €R, (z,z) >0, and (z,2) =0 <= z = 0.
4.1.3 Remark. The following are immediate from the definition of inner product:

(1) (z,2) = (z,2), so (z,x) €R

2) (@y+2) =y+z2)=(yz)+(z2) = ({y2) +(2,2) = (2,9) + (,2)

(3) (z,ay) = (ay, 2) = aly, ) =z, y)

(4) (2,0) =0(z,0)=0

(5) (0,2) = 0(0,2) = 0.

4.1.4 Definition. If V is equipped with an inner product, we call V' an inner product space.

4.1.5 Proposition. Let V' be an inner product space. If y,z € V and for all x € V, (x,y) = (x,

y = z. In particular, if (x,y) =0 for all x € V, then y = 0.
Proof. Suppose y, z € V satisfy the condition in the proposition statement. Then for all z € V|

(z,y) =(z,2) = (v,y)—(r,2) =0 = (x,y—2) =0.

z) then

In particular, (y — z,y — z) = 0, which implies that y — 2 =0, i.e., y = z. H
4.1.6 Example. Let V = F". The standard inner product, or dot product is given by
n
veow = (v,w) = Zviﬁi,
i=1
for any vectors v = (v1,v2,...,v,) and w = (wy,ws,...,w,) in F™. Additionally, any real scalar multiple

of the dot product also forms an inner product on F™, e.g., (v,w)’ = 2{v, w).

4.1.7 Example. Let V = C[a,b]. An inner product on V is given by

4.1.8 Definition. Let A = (a;;) € M, (F). The adjoint (or conjugate transpose) of A is A* € M, (F)

defined by A* = (aji)~
4.1.9 Example. If

then
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4.1.10 Example. Let V = M, (F). The Frobenius inner product is defined by
(A,b) =tr(B*A)
Note that if A = (a;;) and B = (b;;), then (B*A4);; = >, b;ja;;. Therefore
tI‘(B*A) = Z Z%aij = Z Zaijﬁj =v-w,
j=11i=1 j=11i=1

where

v = (a11;a127~-~7a1n7a217a22;-~-7a2n>~--7anlaan2,---;ann)

w = (bllabIQ, .. ';b1n7b21;b227 e 7b2n7 .. ‘7bn17bn27 .. abnn)

4.1.11 Example. Let V = (2(F) :== {(z,)52, € FN : Y7, |z;/* < 00}. An inner product on V is given by

((@n), (yn)) = 23317

4.1.12 Definition. A norm on a vector space V is a map || - |: V — R such that for all v,w € V, a € F
(1) vl > 0and |jv]| =0 <= v=0
(2) llavl| = |af - o]
@) o+ wl < flvfl + [Jwll.

If V is equipped with a norm, we call it a normed vector space.

4.1.13 Theorem (Cauchy-Schwarz Inequality). Let V' be an inner product space, and for x € V, define
[zl = V({z,2). Then for allz,y € V, [(z,y)| < ||| - [ly]|-

Proof. Let z,y € V. If y = 0, the result is trivial. Otherwise, (y,y) > 0. Then for any a € F,

0< ||J} - O[yH2 = <I —Qay,r — ay) = <JI,.’E> —@(x,y) - a<y7m> + aa<yvy>

In particular, when o = gz;,
(y, @) (2,y) (z,9) (y,z) (2, y){y, )
0<(z,x)— T,Y) — ,T) + . Y, y) = (r,x) — ———F—.
) <y,y>< > <y,y>< > (y,y) <.%y>< )= (me) (v,9)
It follows that (z,2){y5) > (2 9)@ g0, .e- [l Il® > (@, ) 7. Therefore llollyll > 1(z, )l

4.1.14 Proposition. Let V be an inner product space. Then setting ||z|| = v/{x,z) for all x € V defines a
norm on V.

Proof. We will show that this choice of norm satisfies all the necessary properties. Let z,y € V, a € F.
(1) Izl = /{=,x) > 0, with ||z]| = y/(z,2) =0 <= z=0.
(2) ezl = /{ow,az) = /]a(z,z) = |al|].

(3) This one requires a little more work and the Cauchy-Schwarz inequality:

e +yl* = (z +y,2+y)
= [lz]® + lyll* + (z, ) + (v, 2)
= [lzI* + llyl1* + (z, v) + (z,9)
= [zl + [[yll* + 2R(z, y)
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< ll2l® + lIyll* + 2/(z, )]
< llal® + llyll* + 2/l - [ly]
= (|l + llyl*-
so [l +yll < [zl + llyll.
This completes the proof. H
4.1.15 Example. Let v = (—1,i,2 +4) € C3. Then

ol = V(=1,4,2+14) - (=1,3,2+14) = /1 + (i)(—i) + 2+ )2 —i) = V2 + 5= VT.

4.1.16 Example. Let
-1 33—
m{4 1qe%m)

Using the norm induced by the Frobenius inner product,

3+1 —1

||v=\/tr([‘1. 4} . [‘41 3;?})  VTTEIT = V38 = 2V

4.1.17 Example. Let f(z) = e” € C[0,1]. Then

I f(x “ edex— 2-1).

4.2 Orthogonality and Orthonormality
4.2.1 Proposition (Parallelogram Law). Let V be an inner product space. Then for all x,y € V,

-+l + llz =yl = 2 l=]|* + 2[|y]|*.
Proof. Let x,y € V. Then

lz+yll> + e —yll* =z +y,24+y) +(x—y,z—y)
= (2,2) + (z,y) + (¥, 2) + (y,9) + (,2) — (z,9) — (y,7) + (y,9)
= 2(z,2) + 2(y,y)
= 2|lz)|* + 2|ly|I?,

[YE|

as required.

4.2.2 Remark. We now begin to translate our geometric intuition into the language of norms and inner
products. The previous proposition is a generalization of the parallelogram law in Euclidean geometry,
which states that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the
squares of its sides.

Consider the Cosine Law in classical geometry: ¢ = a? + b — 2abcos C. In R?, this translates to

= yl* = ll=[I” + lyl1* = 2] zllycos = (z,2) — (&, y) = (y,2) + (y,9) = [zl + [|yI* = 2]}z [|[|y|| cos §
= —2(z,y) = 2[|z[|y[ cos &

(z,y)

Iz llyll

= cosf =

(Note that we assume x,y # 0; we want a triangle, after all.) Thus x,y are perpendicular if and only if
cosf = 0, i.e., (x,y) = 0. This gives us a generalization of the notion of “perpendicular” to abstract inner
product spaces.

15
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4.2.3 Definition. Let V be an inner product space. We say u,v € V are orthogonal if (u,v) = 0. We say
a subset S C V is orthogonal if (u,v) =0 for all u,v € S. If S is orthogonal and |lu|| =1 for all w € S, then
we say S is orthonormal.

4.2.4 Example. The standard basis for F", 0 = {e1, ea,...,e,}, is orthonormal.

4.2.5 Example. When considered as a subset of C[0,1], S = {1, 2,22} is not orthogonal. However, when S
is considered as a subset of P,(R) =2 R3, S is orthonormal.

4.2.6 Remark. Let V be an inner product space. Suppose S = {v1,vs,v3,...,} € V \ {0} is orthogonal.

/ 1 1 1 :
Then S’ = {Wvl’ Toa V25 Toa V37 - <+ } is orthonormal.

4.2.7 Example. Let H be the collection of continuous functions from [0, 27] to C. Then

1 2w —

= — t)g(t)di
() =5 | T®(t)
is an inner product on H. Note that if f(x) € H, then f(z) = u(z) + iv(x), where u,v € C[0,2n], and

[f@)dt = [u(t)dt+i [v(t)dt.
Let fo(t) = e = cos (nt) +isin (nt), and let S = {f,, : n € Z}. Then S is orthonormal.

4.2.8 Proposition. Let V be an inner product space, and let S = {v1,vs,..., 05} C V be orthogonal such
that v; # 0 for all 1 <1i < k. If y € Span(S) such that y = Zle c;v;, where c1,co,...,cp € F, then for all
i<i<k,

{y, vi)

Cp = .
o fwl?

Proof. Let y = Zle ¢iv; € Span(S). Then for each 1 < i <k,

k
(y,vi) = <Z Civiyvi> = ci{vi, vi) = cifloi1?,

i=1

and since v; # 0, we must have
<y7 Ui>
[

as required. H

C; =

4.2.9 Remark. In the above proposition, if S is in fact orthonormal, then ¢; = (y,v;).

4.2.10 Proposition. Let V' be an inner product space, and let S C V' be orthogonal consisting of nonzero
vectors. Then S is linearly independent.

Proof. Let vy, v9,...,v, € S. Suppose Zle c;v; = 0 for some ¢q, ¢, ..., ¢, € F. By Proposition 4.2.8,

0,v;
C; = < Uzz> =
[[oill

for 1 <i <k, so S is linearly independent.
4.2.11 Proposition. Let A € M, (F). Suppose

™1

T2

A= |,

Tn

where 1,79, ..., € F™ and {r1,re,...,rn} is orthogonal. Then AA* is diagonal. If {ri,ra,...,rn} is

orthonormal, then AA* = I.

16
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Proof. Let AA* = (a;;). Since

!
T2
AAT = ASE R R AN B
Tn,
we see that
0 F
aij:<ria7'j>: 2 . .
l[rall* i =
so AA* is diagonal. In particular, if {ry,72,...,7,} is orthogonal, ||r;||> = 1, so AA* = 1.
4.2.12 Algorithm (Gram-Schmidt Procedure). Let V' be an inner product space. Let {w1,wa,...,w,} CV
be linearly independent. We wish to produce an orthogonal set {vy,va,...,v,} €V such that
Span{wy, wa, ...,w,} = Span{vy, va, ..., v, }.

We present a procedure for n = 3; it is easy to see how it could be adapted for larger numbers.
(1) Take v; = w;.

(2) Note: Span{w;,ws} = Span{vy, ws} = Span{vy, wy — awvy } for any a € F. Solve for a so that

0= <w2 — a’U17U1> — ()= <’LU2,U1> — Oz(’Ul,U1> — o= <1|'r27/l|}21>
U1
(3) Take vy = wy — vy = we — <ﬁfl’ﬁ§>v1-

(4) Note: Span{w;,ws, w3} = Span{vy,ve, w3} = Span{vs, ve, ws — avy — Bua}. Solve for o and B:

_ <U}3,'U1> _ <U/37'U2>
Jor ]2 [[va]|?
_ _ (ws,v1) (w3,v2)
(5) Take vz = w3 — av; — Bvg = wy — ﬁf’lﬁé — ﬁiﬁg )

(6) Then {vq,v2,v3} is orthogonal with Span{w;,wa, w3} = Span{vy,v2, v3}, and {Hv—llnvl, ”TIZHU27 HTlg,H”ff}

is orthonormal.

4.2.13 Theorem (Gram-Schmidt). Let V' be an inner product space. If S = {wy,wa,...,w,} C V is
linearly independent, then S* = {v1,va,...,v,} defined recursively by

w1 k=1
v = _
g wy, — Zlel <7|”‘"1f]ﬁ$> v; otherwise
is an orthogonal set of nonzero vectors such that Span(S) = Span(S*).
Proof. Apply the Gram-Schmidt procedure. 5!

4.2.14 Corollary. IfV is a finite-dimensional inner product space, then V' has an orthonormal basis.

4.2.15 Example. Let W = Span{w; = [1,1,0],ws = [0,2,1]} C R3. Take v; = w; = [1,1,0] and

0 1 -1

- <’U.)2,'Ul> . 2 o
Vg = Wo — ) v = 21 — = |1| = 1
vl 1 2 0 1

Thus {%vh %’02} is an orthonormal basis for W.

17
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4.2.16 Remark. Suppose {v1,va,...,v,} C V is orthogonal. Then
lor + vz + -+ 0p 1> = (V1 + vz + -+ vpyv1 02+ -+ 0n) = [Jon]|* + oz |* 4 -+ [lva]|*
4.2.17 Remark. Recall from high school linear algebra that in R2, the projection of # onto w0 is given by

g
<

projz W = ——=9.
-
Geometrically, this explains the choice of « in the Gram-Schmidt procedure: setting o = ’g—g ensures that

W — ot is perpendicular to 7.
4.2.18 Exercise. Find an orthogonal basis for P>(R) C C[0,1].
Solution. Let B = {w; = 1,ws = z,w3 = 2%} be the standard basis for P»(R). Take v; = w; = 1. Then let

1
Wa, v z-1ldx 1
B VS B L1
o] [F1-1dz 2
Also, let
1 1
r° — dx 1 z? dz
v3=w3—<w3’U22>v2—<w3’U21>v1=$2—f0<$—2>—f01'1=x2—x+6.
] ol o1 [ds

This gives us the orthonormal basis {1, T — %7 2 —x+ %}

4.2.19 Exercise. A throwback to high school linear algebra: Find the closest point on x = (1,2) + (1, —1)t
to the point (3, 3).

(31),2) = (2,1), we have projzw = 3(1,—1) = (3,—1). This
)

4.2.20 Remark. We want to generalize the notion of projection to abstract subspaces, not just lines.

Solution. Letting ¥ = (1,—1) and @ = (3, 3)

gives the closest point as (1,2) + (1, -1) = (2,

4.2.21 Definition. Let A, B be subspaces of a vector space V. We say that V is a direct sum of A and B
and write V = A® B if

(1) A+ B={a+b:ac A be B} =V and
(2) AnB={0}.
4.2.22 Proposition. Suppose V.= A B for some A, B <V.
(1) Everyv € V can be uniquely written as v = a + b, where a € A,b € B.

(2) If a is a basis for A and B is a basis for B, then U f is a basis for V. In particular, if V is
finite-dimensional, then dimV = dim A 4+ dim B.

Proof.

(1) Let v € V. Since V.= A @ B, there exist a € A, b € B such that v = a + b; we just need to show
uniqueness. Suppose v is also equal to a+b, where @ € Aand b € B. Then a +b = @+ b, so
Ada—a=b—beB. Since ANB={0},a—a=b—b=0,ie,a=aandb=bh

(2) Let @ = {v1,v9,vs,..., } and 8 = {wy, wa,ws, ..., } be bases for A and B respectively. Since V = A+B,
a U B spans V. Now, suppose Z?Zl ciV; + Z?zl d;w; = 0 for some c¢y,co,...,cp,d1,ds,...,d, € F.

Then . .
A> ZC{UZ‘ = —Zdﬂ)i € B,
i=1 i=1

and since a and [ are each linearly independent, we must have
Cl:CQZ"':C”:O:dl:dQZ"':dm.

Therefore o U 8 is linearly independent.

18
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This completes the proof. H

4.2.23 Definition. Let V be an inner product space, and let @ # S C V. The orthogonal complement of
S is defined to be
Sti={rxeV:{(vz)=0foralveS}

4.2.24 Remark. For any @ # S C V, St is a subspace of V.
4.2.25 Theorem. If W is a finite-dimensional subspace of an inner product space V, then V. =W & W+.

Proof. Let V be an inner product space and let W < V be finite-dimensional. Let 8 = {v1,vs,..., v} be
an orthonormal basis for W. Let u = ZLl(v,vi)vi € W. Let z =v — u. Now, for every 1 < j <k,

(z,05) = (v —u,v5) = (v, v5) — (U, v5) = (v,v5) — (V,0;)(v;,05) = (v,v5) — (v,v5) = 0.

It follows that z € W, Since v = v+ z and u € W, v = u + 2. Therefore V.= W + W+. Now, if
r € WN W+, then (z,z) =0, so = 0. Therefore W & W+ =0, and it follows that V = W @ W+. !

4.2.26 Definition. Let V be an inner product space and W < V be finite-dimensional. Let {v1, v, ..., vk}
be an orthonormal basis for W. For v € V| we call

k

u= Z<U7’U¢>’Ui eWw

i=1
the orthogonal projection of v onto W, and we write u = projy,(v). Note that this vector is unique.

4.2.27 Theorem. Let W be a finite-dimensional subspace of an inner product space V. Let v € V, so that
there exist unique w € W and z € W+ such that v = u+ 2. Then for any x € W, ||v — z|| > ||v — ul|, with
equality if and only if v = u.

Proof. Let x € W. Note that w — 2z € W and z € W+, so
v —z)?=llutz -zl = lu—z+2]* = (u—x+2,u —z +2) = [lu—2|* + [|2]* > ||2],
so [[v—z| > ||z|]| = [lv — u||. Equality holds if and only if ||u — x||?> = 0, i.e., ¥ = u, so we're done.

4.2.28 Example. Let W = Span{(i,0,1 +14), (0, —i,1)} C C3. Note that dim W = 2, so dimW+ = 1. By
inspection, we see that (1 —i,1,—i) € W+, so W+ = Span{(1 —i,1, —i)}.

4.2.29 Exercise. Let V = C[0,1] and let W = P;(R). Find the closest vector in W to f(z) =e” € V.

Solution. By Theorem 4.2.27, we must find projy, (f(z)). First, a basis for W is clearly {1,z}. Upon
applying the Gram-Schmidt procedure to this basis, we see that {1, V12 (x - %)} is an orthonormal basis
for W. Therefore,

proiy (1) = %1+ (e, VEE (2= 1)) (VEE (2 3))

:/Oleajdx—i—(/oleI(\/ﬁx—\/g) dm) (\/ﬁx—\/@
:e—l—i-(e(\/l»—\/g)—&-\f—\/ﬁ(e—l)) (\/ﬁx—\@)

=e—1+4+(3 e)\/g(\/ﬁxf\/@

(3 -
=e—1+4+(3—e)(6x—3)
= (18 — 6e)x + (4e — 10).
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4.2.30 Exercise. Find the closest symmetric matrix to

A= [‘CL Z] € My(R).

Solution. Let W = {X € My(R) : X = XT'}. Note that a basis for W is given by

SRR

Furthermore, by considering the Frobenius inner product we see that this is actually any orthogonal basis.

If we use
= {lo ol ol

then we have an orthonormal basis. Say 8 = {v1,vs,v3}. Then the closest symmetric matrix to A is

projy (A)
= (A,v1)v

1+

1 0
=«([o
4L

2

Db TR e DAL T I DB
L

which is what we might expect intuitively.

4.3 The Adjoint

4.3.1 Definition. Let V be a vector space over a field F'. We say that T: V — F is a linear functional if
T is linear. The dual space V* of V is the vector space of linear functionals on V.

4.3.2 Theorem (Riesz Representation Theorem). Let V' be a finite-dimensional inner product space. Let
T:V — F be a linear functional. Then there exists a unique y € V' such that T'(x) = (x,y) for allx € V.

Proof. Assignment 5. H

4.3.3 Proposition. Let V be a finite-dimensional inner product space. Let T: V — V be linear. Then there
exists a unique linear operator T*: V. — V such that (T(z),y) = (x,T*(y)) for all z,y € V.

Proof. For arbitrary y € V, U,: V — F given by Uy(z) = (I'(z),y) is a linear functional. By the Riesz
Representation Theorem, there exists a unique y' € V such that Uy(z) = (x,y’) for all z € V. Define
TV =>Vby T*(y) =y

It remains to show that T is linear. Let x,y1,y2 € V, a € F. Then

(T'(2), ay1 + y2)
a(T'(z),y1) + (T(x),y2)
a(z, T"(y1)) + (z,T"(y2))
)
)

(, T (ay1 +y2)) =

|
~

= (2, aT"(y1)) + (2, T"(y2))
= (z,aT™(y1) + T"(y2))-

Since x was arbitrary, T*(ay; + y2) = oT*(y1) + T*(y2), and thus T* is linear, so we’re done. )

4.3.4 Definition. We call the function 7™ constructed as in the proof of Proposition 4.3.3 the adjoint of T

20
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4.3.5 Proposition. Let V be a finite-dimsional inner product space. Let B be an orthonormal basis for V,
and let T2V — V be linear. Then [1™]5 = [T]}.

Proof. Let = {vi,v2,...,v,}. Let A= (a;;) = [T]g. Let B = (b;;) = [T"*]s. Then by Proposition 4.2.8,

bij = (T"(v;), vi) = (vi, T*(vy)) = (T'(v3), v;) = i,
so A* = B, as required. H

4.83.6 Remark. Let V be a finite-dimensional inner product space. Let T: V — V be linear. Then for all
z,y €V, (T"(z),y) = (z,T(y))-
4.8.7 Remark. Let A € M, (F) and let o be the standard (orthonormal) basis for F™. Then A = [L4],, so

A" = [Lal; = [Lalo = [La-]o,
and thus (Az,y) = (x, A*y).

4.1 Example. Let T: Py(R) — P(R) be given by T'(f(z)) = f'(z). Take o{2?, 2,1} to be an orthonormal
basis for P,(R) under the dot product. Then

000
T, = |2 0 o,
010
SO
020
[T"]e =[T]; =0 0 1].
000

Hence T*(x2) = 0, T*(x) = 222, and T*(1) = z, so T*(az? + bx + ¢) = 2bx? + c.

4.3.8 Proposition. Let V be a finite-dimensional inner product space. Let T,U:V — V be linear, and let
a € F. Then

(1) (T+U)(2),y) = (T(z),y) + {U(2),y) = (z,T*(y)) + (x, U*(y)) = (2, (T* + U")(y)
(2) ((aT)(2),y) = (T(z),y) = afz, T*(y)) = (=, (@T)(y))
(3) (ToU)(z),y) = (U(x), T*(y)) = (z, (U o T*)(y))
4) ((T*)(2),y) = {y, (T*)(2)) = (T(y), z) = (z,T(y))
(5) (I(2),y) = (2,y) = (2, 1(y)),
and in each case the result follows by uniqueness of the adjoint.
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4.4 Least Squares Approximation

4.4.1 Definition. Suppose we have real data points y1, ¥y, ...,y observed at times t1,%o,...,t,,, and we
plot each (¢;,y;) in R%. Our goal is to find a line that best fits this data; i.e., to find the line so that the
(vertical) distances between the points and said line is minimal. In fact, we will seek to minimize the squares
of these vertical distances. Hence this line of best fit will also be called the least squares line.

4.2 Remark. We wish to find the line y = cz + d that minimizes the error term minimize the error term
E =3 (cti +d —y;)* Accordingly, we set

tl 1 Y1

A t2 1 c Y2
- . . .T B d y - .

tm 1 Ym

so that F = ||Az — y||?. Thus we must find zo so that ||Azg — y|| is minimal.

4.4.2 Remark. We extend the definition of the adjoint to include any A € M, «,(F) by defining A* to be
the conjugate transpose of A, as in the n x n case.

4.4.3 Lemma. Let A € Mpyxn(F), x € F™, andy € F'™. Then (Az,y) = (x, A*y).

Proof. Note that (Ax,y) = y* Az = (A*y)*z = (x, A*y). e

4.4.4 Lemma. Let A € My, xn(F). Then rank(A) = rank(A*A). In particular, if rank A = n, then A*A is
tnvertible.

Proof. We will show a stronger result, namely that Null(A) = Null(A*A). Clearly Null(4) C Null(4*A).
Let x € Null(A*A). Then
| Az|? = (Az, Az) = (, A" Az) = (2,0) = 0,
so Az = 0, and thus Null(A*A) C Null(A). A fortiori, this completes the proof. e
4.3 Remark. Recall that we want to minimize ||Az — yl||, where A € M, xn(F), x € F™, y € F™. Let
W = Range(A). Let yo = projy, (y) € W. Say yo = Axg for some zg € F. Then ||Azo — y|| is minimal.
Now,
y—yo €W = y— Ao e W+
= (Az,y — Azg) =0Vx € F"
= (x,A"(y — Azg)) =0Vx € F"
= A"(y — Azg) =0
= A"y = A" Axy.

If rank A = n (which it always is for our real world applications), zg = (A*A)~1A*y.

4.4 Example. In the last four Spring terms at Waterloo, the MATH 245 final exam averages have been
75, 82, 60, and 70.! To find the line of best fit for this data, we plot the points (1,75), (2,82), (3,60), and
(4,70) and use the matrices

11 75
2 1 82
A=13 Y= 160
4 1] 70
This gives us
. [1 2 3 4 «,_ [30 10 w1 L[4 —10] [1/5 -1/2
A _[1 11 1} AA__l() 4 (A4 _20[10 30]_{1/2 3/2 ]

1Data fabricated for the purpose of this example.

22

June 19



MATH 245 Notes Spencer Wilson

Therefore
75
et 15 —1211 2 3 4] (82| [1/5 —1/2][699] [-3.7
zo = (A74) Ay_{—1/2 3/2 |11 1 1 1| |60] ~— |-1/2 3/2||287| ~ | 81 |”
70

which gives us the line of best fit y = —3.7z + 81.

4.5 Remark. We similarly can find the polynomial of best fit, ¥ = a,z"™ + ap_12" ' + a12 + ag, by using the
matrices

A T | n Y1

e | Un—1 Yo
A=1. . : r= . y=

ool 1 ao Ym

4.5 Normal, Hermitian, and Unitary Operators

4.5.1 Remark. Note that for A € M, (F), if the columns of A form an orthonormal basis for F™, then
A*A =1, and thus A~' = A*.

4.5.2 Lemma. Let V be a finite-dimensional inner product space. Let T:V — V be linear. If T has an
etgenvector, then T* has an eigenvector.

Proof. Suppose there exists 0 # v € V such that T

—~

v) = Av for some A € F'. Then

(T—-X)v)=0 = (T —-A)(v),z)y=0Vx eV
= (u,(T—-AD)*"(x))=0Vz eV
= (v, (T* = XI)(z)) =0 Vz € V.

—~

Hence 0 # v € Range(T* — A)*, so Range(T* — AI) # V. In particular, Null(T* — XI) # {0}, so T* has a
A\ eigenvector.

4.5.3 Theorem (Schur). Let V be a finite-dimensional inner product space. Let T: V — V be linear such
that the characteristic polynomial of T' splits over F. Then there exists an orthonormal basis for V' such that
[T is upper triangular.

Proof. By induction on n = dim V. If n = 1, we’re clearly done. Inductively, assume the result for all inner
product spaces with dimension less than n. Suppose dim V' = n. Since the characteristic polynomial of T’
splits, T" must have an eigenvector. By Lemma 4.5.2, so does T™*. Let an eigenvector for T be 0 # v; then
T*(v) = Av for some A € F. Without loss of generality, we may assume that ||v|]] = 1. Take W = Spanw.
Then V=W @& W+.

We claim that W+ is T-invariant. Accordingly, let y € WL. Then (T(y),v) = (y,T*(v)) = (y, \v) =
My, v) = 0, because y € W+. Since W = Span v, this shows that T'(y) € W+; hence, W+ is T-invariant.

Now, dim W+ = n — 1, and the characteristic polynomial of Ty splits, since it divides the characteristic
polynomial of T'. Therefore there exists an orthonormal basis v or W+ such that [Ty 1], is upper triangular.
Then 8 = v U {v} is an orthonormal basis for V, and

*
[TWL]’Y *
[T]ﬁ = : ’
0 - 0]«
which is upper triangular. This completes the proof. H
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4.5.4 Corollary. ? Let A € M, (F) such that the characteristic polynomial of A splits. Then there exist
U,B € M,(F) such that U=! = U*, B is upper triangular, and A = UBU*.

Proof. By Schur’s theorem, choose an ordered basis 3 such that [L 4] is upper triangular, and set B = [L 4]g.
Then take U = [I]. The columns of U are orthonormal, so [I]7 = U~! = U*. Then

A=[Lal, = N3[Lals[1]; = UBU™,
as required. H

4.5.5 Definition. Let V be a finite-dimensional inner product space. Let T: V' — V be linear. We say
that T is normal if TT* = T*T. Similarly, we say that A € M,,(F) is normal if AA* = A*A.

4.5.6 Proposition. Let V be a finite-dimensional inner product space. Let T: V — V' be normal.

(1) Forallz eV, | T(x)| = |T*(x)]|.

(2) Every \-eigenvector of T is a A-eigenvector of T*.

(3) If x is a A-eigenvector of T and y is a p-eigenvector of T, where X\ # u, then x and y are orthogonal.
Proof.

(V) 7@ = (T(2), T(@)) = {2, T*T(2)) = (@, TT*(2)) = (T % (2), T*(2)) = | ()]

(2) Suppose T'(v) = v for some 0 # v € V and A € F. consider U = T'— AI. Then UU* = U*U, so
lU*(v)|| = ||U(v)|| = 0, which means that U*(v) = 0. Therefore T*(v) = Av.

(3) Suppose T'(x) = Az and T(y) = py for some 0 £ z,y € V, A\, u € F with X\ # u. Then
Mz,y) = (T(x),y) = (. T"(y)) = (z,y) = u(z,y).
Since A\ # p, we must have (x,y) = 0, so z and y are orthogonal.
This completes the proof.

4.5.7 Theorem. Let V be a finite-dimensional inner product space over C. Let T:V — V be linear. Then
T is normal if and only if there exists an orthonormal basis B for V' composed of eigenvectors of T .

June 24
Proof. (=) Assume T is normal. By Schur’s Theorem, there exists an orthonormal basis 5 = {v1,va,...,v,}
such that [T]g is upper triangular. Say A = [T = (a;;). Now T'(v1) = a11v1, so vy is an eigenvector
of T. Inductvely, suppose vi,vs,...,vx_1 are eigenvectors of T for some k > 2. Say T(v;) = \;by for

1€{1,2,...,k—1}. We claim that v; is an eigenvector of T.
Note that since A is upper triangular,

[T'(ve)]s = [T]plvels = Alvels = (a1k, azk, - - - axx, 0, ..., 0),
and therefore T'(vg) = a1xv1 + aggv2 + - - - + agrvg. By Proposition 4.2.8,
aix = (T(vk),vi) = (v, T (v3)) = (Uk,)\7%> = Mok, vi) =0

for 1 <4 < k, so in fact T'(vg) = agkvr. By induction, S is an orthonormal basis for V' composed of
eigenvectors of 7.

(<) Assume there exists an orthonormal basis 8 for V' composed of eigenvectors of T. Then [Tz is
diagonal. Since 3 is orthonormal, [T*]g = [T]};, which must be diagonal. Therefore

[TT")p = [T]p[T"]p = [T"]s[T]s = [T"T]p-

Hence T*T = TT*, so T is normal. This completes the proof. )

2Corollary 4.5.4 was presented on June 17, before the proof of Schur’s Theorem.
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4.5.8 Corollary. 3 Let A € M,(C). Then A is normal if and only if there exists U, D € M, (C) such that
U~!' =U*, D is diagonal, and A = UDU*.

4.5.9 Example. A word of warning:

A= {_01 é] € My(R)

satisfies AA* = A*A = I, but its characteristic polynomial is 2% + 1, so it is not diagonalizable.

4.5.10 Definition. Let T be a linear operator on a finite-dimensional inner product space V. We say that
T is Hermitian if T = T*. Similarly, we say that A € M, (F) is Hermitian if A = A*.

4.5.11 Proposition. Let V be a finite-dimensional inner product space. Let T:V — V be a Hermitian
operator. Then

(1) every eigenvalue of T is real;
(2) the characteristic polynomial of T splits over F'.
Proof.

(1) Since T is Hermitian, T" is normal. Let A € F' be an eigenvalue of T" with eigenvector 0 # 2. Then
A =T(z) =T*"(x) = Az. Since z #0, A=A, s0 A € R.

(2) We know that the characteristic polynomial of T' must split over C. Since every eigenvalue of T is real,
the characteristic polynomial of T" has no complex roots, so it must also split over R.

This completes the proof.

4.5.12 Theorem. Let V be a finite-dimensional inner product space over R. Let T:V — V be linear. Then
T is Hermitian if and only if there exists an orthonormal basis B for V' composed of eigenvectors of T .

Proof. (=) Assume T is Hermitian. By Proposition 4.5.11, its characteristic polynomial splits over R. By
Schur’s Theorem, there exists an orthonormal basis § such that [T]s is upper triangular. Furthermore
[T]5 = [T*]g = [T, so [T]g is symmetric and hence diagonal.

(=) Assume there exists an orthonormal basis 3 for V' composed of eigenvectors of T'. Then [T™]5 = [T1}.
Since [T is diagonal, [T} = [T]g, so in fact [T = [T]g. Therefore T'=T*, so we're done. i)

4.5.13 Corollary. Let A € M, (R). Then A is Hermitian if and only if there exist U, D € M,(R) such that
UT =U"', D is diagonal, and A =UDUT.

4.5.14 Example. The matrix

is symmetric but not normal, since

e ey | O Pl B PP P i R
4.5.15 Definition. Let V be a finite-dimensional inner product space. Let T:V — V be linear. If
T—! =T*, then we say T is
(1) orthogonal if FF =R
(2) unitary if F' = C.
Similarly, we say that A € M, (R) (M, (C)) is orthogonal (unitary) if A1 = A*.

4.5.16 Remark. A € M, (F) is unitary/orthogonal if and only if L4 is unitary/orthogonal.

3Corollary 4.5.8 and Example 4.5.9 were presented on June 19, before the proof of Theorem 4.5.7.
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4.5.17 Proposition. Let V' be a finite-dimensional inner product space. Let T:V — V be linear. The
following are equivalent:

(1) T is unitary/orthogonal.

(2) (T(2),T(y)) = (x,y) for all z,y € V.

(3) If B is an orthonormal basis for V, then T(B) is an orthonormal basis for V.

(4) There exists an orthonormal basis B for V' such that T'(f3) is an orthonormal basis for V.
(5) Forallz eV, ||T(z)| = ||z

Proof. (1) = (2) Assume (1). Then for all z,y € V,

(T(x),T(y)) = (&, T*T(y)) = (x,T'T(y)) = (z,y).

(2) = (3) Assume (2). Let 8 = {v1,v2,...,v,} be an orthonormal basis for V. We first show that T is
injective. Let # € Null(T'). Then 0 = | T(z)| = (T(z),T(z)) = (z,z), so x = 0. Therefore Null(T") = {0},
so T is injective, and in particular T'(5) is a basis for B. Finally, for any 1 < ¢,j < n with i # j,
(T(v;), T(v;)) = (vi,vj) =0 and || T(v;)]|* = (T'(v;), T(v;)) = (vi,v;) = 1, so T(B3) is orthonormal.

(3) = ( ) Trivial.

(4) = (5) Assume (4). Let 5 be an orthonormal basis for V' such that T'(/3) is an orthonormal basis for
V. Say B ={v1,va,...,0,}. Let © € V. Say © = ayv1 + agus + - - - + anvy,, where aq,as,...,a, € F. Then

[z]|* = (a1v14+a2va+- - ~+anvn, a1v1+agvat- - +anvn) = a1@1+a2@z+ -+ anGy = ||laq||*+|az]*+- -+ |an ||?
and similarly
IT(x)|? = (a1 T (v1) +a2T (v2)++ - -+anT(vp), a1 T (v1) +a2T (v2)++ - -+anT(vy)) = [lar|*+|az]>+- - +]an|?,

so [lz]| = [IT ()]l

(5) = (1) Assume ||T'(z)|| = ||z| for all z € V. Then for allx € V, (T'(z),T(z)) = (x, ), so {x, T*T(z)) =
(x,x), which implies that (z, (T*T — I)(z)) = 0. Setting U = T*T — I, we note that U = U*. Therefore
there exists an orthonormal basis for V' composed of eigenvectors of U. Accordingly, let 0 # v € V such that
U(v) = v for some A € F. Then 0 = (v,U(v)) = (v, \v) = A(v,v), and since v # 0 we must have \ = 0.
Therefore all the eigenvalues of U are 0, and since U is diagonalizable, U = 0. Therefore T*T = I.

This completes the proof. ]

4.5.18 Definition. Let A, B € M,(F). We say that A and B are orthogonally/unitarily equivalent if
there exists an orthogonal /unitary matrix U such that A = UBU*. If B is diagonal, we say that A is
orthogonally/unitarily diagonalizable.

4.5.19 Corollary. LetV be a finite-dimensional inner product space. Let T: V — V be orthogonal/unitary.
Then every eigenvalue of T has absolute value 1.

Proof. If T(x) = Az for some 0 # 2 € V, A € F, then |A|||z]| = |[Az]| = [|T(2)] = ||z||, so |A] = 1. !

4.5.20 Corollary. Let V be a finite-dimensional inner product space over R. Let T:V — V be linear.
Then T is orthogonal and Hermitian if and only if there exists an orthonormal basis for V' composed of £1
eigenvectors of T .

4.5.21 Corollary. Let V be a finite-dimensional inner product space over C. Let T: V — V be linear. Then
T is unitary if and only if there exists an orthonormal basis for V. composed of eigenvectors of T where each
eigenvector corresponds to an eigenvalue of modulus 1.
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4.5.22 Example. Let
0 -1
A= L 5 } |
Then A is normal, but not Hermitian, so A is unitarily diagonalizable but not orthogonally diagonalizable.
The characteristic polynomial of A is f(z) = 22 + 1 = (z +14)(z — ).

We see by inspection that (i,1) and (1,4) are eigenvectors for A corresponding to eigenvalues Ay = i
and A = —i respectively. Therefore Ey, = Span{(i,1)} and E\, = Span{(1,4)}. Since A is normal, these
eigenvectors must be orthogonal, so 5 = (%(z, 1), %(1,1)) is an orthonormal basis for C2. Therefore
A =UDU*, where

o-[i 1 -

4.5.23 Example. Let
0 2 2
A=12 0 2
2 20

Note that A is symmetric and thus orthogonally diagonalizable. The characteristic polynomial of A is

2 2 2 2
2 —zx —x 2

= —x(x? —4) — 2(—2x — 4) +2(4 + 2z)
= 2 +dr+4r+8+8+4x
=—2°+ 122+ 16

= (z —4)(—2* — 4z — 4)

= —(z—4)(z+2)%

+2

1,1)}. Setting Ao = —2, we
0),(—1,0,1)}. Applying the
1,4,2)} for

Setting A; = 4, we note that (1,1,1) is a A\; eigenvector, so E), = Span{(1,
see that (1,—1,0) and (—1,0,1) are Ay eigenvectors, so Ey, = Span{(1, —1,
Gram-Schmidt procedure produces orthonormal bases {%(1, 1, 1)} and {%(1, -1,0),
E,, and E, respectively. Since A is normal, an orthonormal basis for V' is given by

1
Vi

1 1

{(1,1,1),\/5

7 (1,-1,0)

1
[ _17_1a2
VAR,
. Therefore A =UDU7”, where

1/vV3 1/vV/2 —1/v6 4 0 0
U= [1/V3 —-1v2 -1V6 D=0 -2 0
1/V3 0 2/\/6 0 0 -2

4.6 Rigid Motions

4.6.1 Definition. Let V be a finite-dimensional inner product space over R. We say that f: V — V is a
rigid motion if || f(z) — f(y)|| = ||z —y|| for all z,y € V.

4.6.2 Example. In R?, rotation, translation, and reflection are all rigid motions. As we will show, these
are the only rigid motions in R2.
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4.6.3 Definition. Let V be a vector space. A translation is a function f: V — V given by f(z) =z + v
for some fixed v € V.

4.6.4 Proposition. Let V be a finite-dimensional inner product space over R. Let f: V — V be a rigid
motion. Then there exists a unique orthogonal operator T:V — V and a unique translation g: V. — V such
that f =goT.

Proof. Define T: V — V by T(x) = f(z) — f(0). We claim that T is linear and orthogonal. First note the
following:

(1) For all 2,y € V, |T(x) = TW)I| = [l £(z) = £(0) = £(y) + FO)| = 1 (@) — F@) = = — yl].
(2) Forall z € V, [T(@)||? = [|f(x) — FO)2 = [l — 0]12 = [l2]|%, s0 | T(@)]| = ]

(3) Fora,y € V., |T(x) = T(y)|> = |T(2) | + | T(W)II* — 2T (), T(y)) = l|=]|* + [lyll* — 2(T (), T(y)) and
o — yll? = ll2]2 + Iyll? - 2(z.). By (1), |T(@) — T)] = 1~ yll, s0 (2,9} = (T(2). T(»)).

Let z,y € V, a € R. Then

IT(z + ay) = T(z) — aTW)|* = |T(z + ay) = T(@)|* + [laT(y)||* = 2T (z + ay) — T(x),aT(y))
= |z —ay —z|* + ayl]* - 2(z + ay — z,ay)
= 207|ly||* — 20*(y.y)
so T'(z 4+ ay) = T(x) + aT'(y). Therefore T is linear. By (2), T is orthogonal.

It remains to show uniqueness. Suppose T and U are orthogonal and a,b € V such that f(x) = T(x)+a =
U(z)+b. Then f(a) =T(0) =a =U(0) =, so a = b, and therefore U = T. This completes the proof.

4.6.5 Example. Consider Tp: R? — R? corresponding to counter-clockwise rotation by §. Then for all

x € R%, ||Tp(z)|| = ||z||, so Ty is orthogonal. Moreover, Tp(e1) = (cosf,sinf) and Ty(es) = (—sinb, cos ).
Therefore ) "
cosf —sin
[Tolo = {sin@ cos }

4.6.6 Example. Consider T: R? — R? corresponding to reflection over the line y = mxz. Let a be the
(positive) angle between the z-axis and y = ma. Take v; = (cos a, sina) and vy = (—sin a, cos a); note that
lv1]] = 1 = ||lva]| and vy - vg = 0, so B = {v1,v2} is an orthonormal basis for bbR?. Therefore

=y Y-

- [cos o —sin a]

This gives us [T], = U[T]gUT, where

" |sina  cosa

Therefore

1, — [eose —sina] [1 0] [cosa sina]

sina  cos« 0 —1| |—sina cosa
__|cosa —sina| |cosa sin o
" |siha  cosa sinae —cosa
~ [cos’a —sin’a  2cosasina
2 cosasin o sin? a — cos? «

_ Jeos (2a)  sin (20) }
|sin (2a)  —cos (2a) |
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4.6.7 Proposition. Let T: R? — R? be an orthogonal operator. Then T is a rotation or a reflection over
a line through the origin. In particular, if f: R2 — R? is a rigid motion, then f is either a rotation or a
reflection followed by a translation.

Proof. Let 0 = {e1,e2} be the standard basis for R?. Since T is orthogonal, T(c) = {T(e1),T(e2)} is
an orthonormal basis for R2. Then || T(e1)|| = 1, so T(e1) = (cos,sinf) for some 6 € [0,27). Moreover,
(T(e1),T(e2)) = 0and ||T(e2)|| = 1. It follows that either T'(e2) = (cos (0 + 5),sin (0 + 5)) = (—sin6, cos 0)
or T(e2) = (cos (0 — 5),sin (6 — Z)) = (sinf, — cos#). Therefore [T], is one of

cos —sinf cosf siné
sinf  cos@ sinf —cos6
and therefore T is either a rotation or a reflection, as required. &)

4.7 Spectral Decomposition

4.7.1 Definition. Let V be a finite-dimensional vector space. Let Wy, Wy < V such that V = W; & Ws.
Recall that for every v € V there exist unique =, € Wy, y, € W5 such that v = x,, + y,. The linear map
T:V — V given by T'(v) = z, is called the projection on Wy along Wy. If Wy = Wi, then T'(v) = projyy (v),
and we say that T is an orthogonal projection.

4.6 Remark. If T is as in the above definition, Range(T') = W; and Null(T') = Ws.

4.7.2 Proposition. Let V be a finite dimensional vector space. Then a linear operator T:V — V is a
projection if and only if T = T2.

Proof. (=) Assume T is a projection. Thus T is the projection on Range(T) along Null(7"). Let v € V.
Then v = T(z) + z, for some T(x) € Range(T), 2 € Null(T'). Then T(v) = T?(x) + T(2) = T?(x) = T(z),
so T?(v) = T?(x) = T(x) = T'(v). Therefore T = T2.

(<) Assume T = T%. We claim that V = Range(T) ® Null(T). Indeed, if z € Range(T) N Null(T),
then T'(z) = 0 and there is some y € V such that * = T(y). But then 0 = T'(x) = T?(y) = T(y) = z,
so Range(T) N Null(T) = {0}. But dim(Range(T) + Null(T)) = dim V' by the Rank-Nullity Theorem, so
V = Range(T) ® Null(T). Moveover, if v = T(x) + 2z, where T(x) € Range(T) and z € Null(T), then
T(v) = T?(z) = T(z), so T is the projection on Range(T) along Null(T). e

4.7.3 Proposition. Let V be a finite-dimensional inner product space. Let T:V — V be a linear operator.
Then T is an orthogonal projection if and only if T = T? = T*.

Proof. (=) Assume T is an orthogonal projection. By Proposition 4.7.2, we know that T = T2, so it
suffices to show that 7' is Hermitian. Let z,y € V. Then « = T(v1) + 21 and y = T'(v2) + 22 for some
T(v),T(ve) € Range(T), z1, 22 € Null(T'). Then

(T(x),y) = (T*(v1), T(v2) + 22) = (T(v1), T(v2) + 22) = (T(v1), T (v2)) + (T (v1), 22)-
Since T is an orthogonal projection, (T'(v1),z2) = 0. Therefore (T'(z),y) = (T (v1), T (v2)). Similarly,
(@, T(y)) = (T(v1) + 21, T(v2)) = (T(v1) + 21, T(v2)) = (T(v1), T(v2)) + (21, T(v2)) = (T'(v1), T(v1)).

Therefore (x,T(y)) = (y,T(z)), and since & and y were arbitrary, T = T*.

(<) Assume T = T? = T*. By Proposition 4.7.2, we know that T is a projection, so it suffices to show
that T is an orthogonal projection, i.e., that Null(T) = Range(T)*. Accordingly, let T(z) € Range(T),
y € Null(T). Then

(T(@),9) = (2. T" (1)) = (&, T()) = (2,0) =0,

so Null(T) C Range(T)*. But dim Null(T') = dim V — Range(T') = Range(T)*, so Null(T) = Range(T)*.
Therefore T' is an orthogonal projection. )
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4.7.4 Definition. For i, j € Z, we define
0 i
0ij = { Z ?é‘? :
1 1=y

4.7.5 Theorem (Spectral Theorem). Let V be a finite-dimensional inner product space. Let T:V — V be
linear. Let the distinct eigenvalues of T be Ay, Ao, ..., A\p. If F = C, assume T is normal; if F =R, assume
T is Hermitian. For 1 <i <k, let W; = E\, and T;(x) = projy, (z). Then

1 V=WoW,o- - oW,

Q Wr=WioWo®--oWi1&@Wi1 @ 0 W, =W/
(3) Ty o Ty = 6;;T;

4) I=T1+To+ - +Ty

(5) T=MT1+ T+ + NTy.

Proof. Fix 1 <i,j <k.

(1) Since T is normal/Hermitian, its distinct eigenspaces intersect trivially; therefore W, & Wo @ -« - @
Wy < V. Also, T is diagonalizable, so dim W7 + dim Wy + -+ + dim W), = dim V. It follows that
V=W aeWyd- & W

(2) Let x =a1 + a0+ +xim1 + X401 + -+ + 2% EWZ-/,yEWi. Then
(r,9) = (@1, 9) + (@2, 9) + -+ @i, 9) + @i, )+ + (@, y) =040+ +0+04---+0=0,
since T is normal. Therefore W/ C W, and since dim W/ = dim V — dim W; = dim W; -, W/ = W;t.

(3) First note that T; o T; = Tf = Tj, since T; is a projection. If 4 # j, then T; o T; = 0, since T is
normal /Hermitian and therefore E), and F A, intersect trivially.

(4) Let ¢ = a1 + 2 + - - - + xp, where each z; € W,;. Then
(M + T+ +Tp)(x) =T (x) + To(x) + -+ Th(x) =21 = 22 + - + 4,
soTy+To+---+1Tp=1.
(5) Again,let x = x1 + 22 + - - - + 2z, where each z; € W;. Then
(MTy 4+ AT+ -+ N Te) () = My + Xowo + -+ + Mg = T(1) + T(xg) + -+ + T(xg) = T(x),
so (MTy + AT+ -+ NT)=T.
This completes the proof. )

4.7.6 Definition. Let V' be a vector space. Let T: V' — V be linear. The set of eigenvalues of T is called
the spectrum of T and denoted o (7). The expression

T:)\1T1+)\2T2+"'+)\ka
as in the spectral theorem is called the spectral decomposition of T.

4.7.7 Remark (Lagrange Interpolation). Let cg,c1,...,c, € F be distinct. Define

Hj;éi(x —¢)

fi(z) = (e o)

and note that fi(c;) = d;; for all 1 <4,5 <n.
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We claim that {fo, f1,..., fn} is a basis for P, (F). Indeed, if
aofot+arfi+- -+ anfn=0

for some ag, a1, ...,a, € F, then for every 1 <i <mn

0= (aofo+arfi+ - +anfn)(c) = as,

so {fo, f1,.-., fn} is linearly independent and hence forms a basis for P, (F).

4.7.8 Remark. With V and T as in the Spectral Theorem, T = N{T} + X§Tp + -+ + AeTy for £ € N. Tt
follows that for f(l‘) S F[.’L’], f(T) = f(/\l)Tl + f()\Q)TQ + -+ f(/\k)Tk

4.7.9 Corollary. Let V be a finite-dimensional inner product space over C. Let T:V — V be a linear
opreator. Then T is normal if and only if T* = f(T') for some f(x) € F[z].

Proof. (=) Suppose T is normal. Let T' = \T7 + AoTo + - - + AT be the spectral decomposition of 7',
Using Lagrange interpoation, let f(x) € F[z] such that f(A;) = A; for 1 <i < k. Then

k k

k
T =" N1 =Y NTi= > fNT: = f(T),
=1 1=1

i=1

since each T; is an orthogonal projection and hence is Hermitian.
(«) For any f(x) € Flz], Tf(T) = f(T)T, so TT* = T*T, and we’re done.

4.7.10 Corollary. Let V and T be as in the Spectral Theorem. Then for each 1 < i < k, there exists
gi € Flx] such that g;(T) = T;.

Proof. For each 1 <i <k, choose g; € F[z] such that g;(A;) = d;; for 1 < j < k. )

4.7.11 Corollary. LetV be a finite-dimensional inner product space over C. Let T: V — V be linear. Then
T is Hermitian if and only if T is normal and o(T) C R.

Proof. (=) See part (1) of Proposition 4.5.11.
(<) Let MT1 + AoTo + - -+ + A\ T be the spectral decomposition of T', where A1, Ao, ..., A € R. Then

T =MNT7 + X T5 + -+ XTI = T+ XoTo+ -+ NI =T,
so T' is Hermitian, and we’re done.

4.7.12 Corollary. LetT be a finite-dimensional inner product space over C. Let T:V — V be linear. Then
T is unitary if and only if T is normal and |\ = 1 for all X € o(T).

Proof. (=) See Corollary 4.5.19.
(«=) Suppose T is normal and |[A\| = 1 for all A € o(T). Say the spectral decomposition of T"is T' =
AT+ XTI+ -+ ATy Then T = MT1 + AoTo + - -+ + AT}, so

TT* = MMTi+ Do+ 4+ MM Ty =Tv+ To+ -+ Ty =1,

so T' is unitary, and we’re done.
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4.8 Singular Value Decomposition

4.8.1 Definition. Let T: V — W be linear, where V' and W are finite- dimensional inner product spaces
over the same field F. Let T: V — W be linear. A function T%: W — V is called an adjoint of T if
(T(x),y) = (x,T*(y)) forall z € V and y € W.

4.8.2 Proposition. Let T:V — W be linear, where V. and W are finite- dimensional inner product spaces
over the same field F'. Let T:V — W be linear. Then:

(1) T exists, is unique and is linear.

(2) If B and ~ are orthonormal bases for V and W respectively, then [T*]5 = (115"

Proof.
(1) For arbitrary y € W, Uy: V — F defined by Uy(z) = (T'(z),y) is a linear functional. By the Riesz

Representation Theorem, there exists a unique y" € V' such that Uy(x) = (z,y’) for all z € V. Define
TW=>VbyTx(y) =y.

It remains to show that T is linear. Let x € V, y1,y2 € W, a« € F. Then

(z, T"(ayr + y2)> <T($)’ ay1 + yz2)
y1) +(T(x), y2)
z, (y1)> (x, T"(y2))
;T (y1)> (z,T"(y2))
;oI (y1)

Since = € V was arbitrary, it follows that T{ay; + y2) = aT*(y1) + T*(y2), so T* is linear.

(2) Say 8 = {v1,v2,...,vn} and v = {wy, wa, ..., w,}. Let A= (a;;) = [T]}. Let B = (bij) = [T*]5. Then
by Proposition 4.2.8,

bij = (T"(w;), vi) = (i, T*(w;)) = (T(v:), wy) = @i,
so B = A*, as required.
This completes the proof. H

4.8.3 Definition. Let V be a finite-dimensional inner product space. Let T: V' — V be linear. We say
that T is positive semidefinite if T is Hermitian and (T'(x),z) > 0 for all x € V.

4.8.4 Proposition. Let V be a finite-dimensional inner product space. Let T:V — V be a linear operator.
Then

(1) T is positive semidefinite if and only if T =T* and o(T') C [0, 00)
(2) T is positive semidefinite if and only if T = U*U for some linear operator U: V — V.
Proof.

(1) (=) Suppose T is positive semidefinite. Then T' = T* by definition; it follows that o(7) C R. If
T has a negative eigenvalue, i.e., there exists 0 > A € R, 0 # v € V such that T(v) = Av, then
(T(v),v) = (=Av,v) = =A(v,v) < 0, since (v,v) € RT. But since T is positive semidefinite, this
cannot be, so T has no negative eigenvalues. Hence o(T") C [0, 00).

(<) Suppose T' = T* and o(T) C [0,00). Let f = {v1,vq,...,v,} be an orthonormal basis for V
composed of eigenvectors of T, where n = dimV. Say T'(v;) = \jv; for 1 < i < n. Let x € V. Then
T = ayv1 + asvs + - - - + a,v, for some ai,as,...,a, € F. Then

(T'(z),z) = (a1 T(v1) + a1 T (v2) + - -+ + anT (vn), a1v2 + agve + - - - + anvy,)
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= (a1 Mv1 + a1 Xov2 + - - + apApUn, a102 + a2z + - -+ apvy)
= a1 Ma1{v1,01) + a2A2G3(vVa2, V2) + ApAnTn (Un, Un)

= la1|*A1 + [az]® A2 + -+ + [an[*An.
Since A1, Aa,..., An >0, (T(z),2) >0, so T is positive semidefinite.
(2) (<) Suppose T'= U*U for some linear operator U: V — V. Let € V. Then
(T'(x),z) = (U"U(x),z) = (U(x),U(z)) € [0,00),

so T is positive definite.

(=) Suppose T is positive semidefinite. Since T is Hermitian by definition, there exists an orthonormal
basis § = {v1,v2,...,v,} for V consisting of eigenvectors of T. Furthermore, each v; corresponds to
some eigenvalue \; € [0,00). Define U(v;) = v/A\v; for each v; and extend via linearity. Then f3 is
an orthonormal basis for V' composed of eigenvectors of U, so U is normal. Therefore each v; is a
Vi = Vi eigenvector for U*. Then for each v; € 8, U*U (v;) = \jv; = T(v;), so T = U*U.

This completes the proof.

4.8.5 Proposition. Let VW be finite-dimensional inner product spaces over F. Let T: V — W be linear.
Then T*T and TT* are positive semidefinite with rank(T*T) = rank(T") and rank(T*) = rank(TT™).

Proof. Let x € V, y € W. We see that
(T"T(z),2) = (T(2),T(x)) € [0,00) (TT*(y),y) = (T"(y), T"(y)) € [0,00),

so T*T and TT* are positive semidefinite.
We claim that Null(T") = Null(T*T'). Clearly Null(T) C Null(T*T). Let € Null(T*T). Then

(T(z), T(x)) = (x, T"T(x)) = (x,0) = 0

so T(z) = 0 and in fact Null(T*T) = Null(T"). Similarly, Null(T'T*) = Null(T*). Therefore we must have
rank(7T") = rank(7*T') and rank(7T™*) = rank(T'T™*), so we’re done. H

4.8.6 Theorem (Singular Value Decomposition). Let V,W be finite-dimensional inner product spaces over
the same field F. Let T:V — W be linear. Let rank(T) = r. Then there exist orthonormal bases
{vi,v9,...,v,} and {ui,us,...,um} for V.and W respectively and real scalars oy > g9 > -+ > 0. > 0
such that T'(v;) = oyu; fori <r and T(v;) =0 fori > r. (Forr < i <mn, we define o; =0.) Conversely,
if the above conclusion holds, then each v; is a o2 eigenvector of T*T. In particular, the o;s are uniquely
determined.

Proof. Consider T*T: V — V. By Proposition 4.8.5, T*T is positive semidefinite, and rank(T*T) =
rank(T) = r. Since T*T is Hermitian, there exists an orthonormal basis {vy,vs,...,v,} for V consist-
ing of eigenvectors of T*T. Say T*T(v;) = \wv; for 1 < i < n, where A\; € [0,00). For 1 < i < n, let
0; = v/ i. Without loss of generality, assume Ay > Ay > --- > A\, > 0and \; = 0 for » < i < n. Then
or>09>--->0,>0and o, =0forr<i<n. Fori<r, letui:%T(Ui). Then

1 1 1 1 Ai
iug) = —T(vi), —T(v;) ) = T*T(vi),v5) = ——(Nvi, vj) = ——(v3,v5) = &ij.
fu5) = { ST, T(0)) = S T T0)03) = o (i) = (o) =0,
Therefore {uy,us, ..., u,} is an orthonormal set. By the Gram-Schmidt procedure, we may extend this to an
orthonormal basis {uy, ua, ..., Ur,..., Uy} for W. Then for i < r, T(v;) = o;u; and for ¢ > r, T*T(v;) = 0,

so by the proof of Proposition 4.8.5, T'(v;) = 0.
It remains to show that the o;s are uniquely determined. Suppose we have wu;s, v;s, and o0;s as in the
theorem statement. Then

T* (ui) = Z<T*(UZ‘),'U]‘>'U]' = Z<ui’T(”7)>vj Yo r<i<n’

" o {Uﬂ}i 1 S ) S T
j=1 j=1
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For i <7, T*T(v;) = T*(oyu;) = 0;T*(u;) = o?v; and for i > r T*T(v;) = T*(0) = o;v;. Therefore the o;s

i
are the square roots of the eigenvalues of T*T', so they are uniquely determined, and we’re done.

4.8.7 Definition. 4 In the Singular Value Theorem, the ;s are called the singular values of T. If r < m, n,
then we also call 0,41 = 0py0 = -+- = 0 = 0, where k = min(m, n), singular values of T.

4.8.8 Example. Let T: R? — R3 be given by T'(z,y) = (x, x+y,z—y). Let 3; be the standard (orthonormal)

basis for R?. 5 Then
1 0

T3 =1 1]|=A

Then

8 8 8 8 8 1 1 1 Lo 3 0
R et A

Therefore 32 = {v; = e1,v2 = ez} is an orthonormal basis for R? such that T*T(v;) = 3v; and T*T(vq) =

20y. Setting Ay = 3 > 2 = )y, we obtain o1 = V3 and 03 = V2. Let u; = G%T(vl) = %(1,1,1) and
uy = U%T(vg) = %(071,—1). Conveniently, {uj,us,e3} is a basis for R®. Applying the Gram-Schmidt

procedure, let

0 1 0 -2
<€3,U1> <€3,U2> 1 1 1 1 1
Uz = e3 — Uy — Up =e3— —=u1+—=u2= 0| — < |1|+=- |1 |==]1
T el el P VBT VR 3| 2] 6,
Then setting ug = %(—2, 1,1) gives us an orthonormal basis v = {uy,ug,u3} for R3. Let 8 = {vi,v2}.
Then
(715 = P (TI3E, = MPITR(1F)" = UDv,
where

25 V=lu Ug}:[(l) ‘1)]

U=lu uy wus]=|1/vV3 1/v2 1/V6 D=
V3 -1/v2 1/v6

4.8.9 Definition. Let A € M« (F). The singular values of A are the singular values of L4: F™ — F™.

V3 0 —2/V6 V3
0
0

4.8.10 Theorem (Singular Value). Let A € My, «,(F). Let rank(A) = r. Say the singular values of A are
o1 > 09 > -0, > 0. Then there exist unitary U € M,,,(F) and unitary V € M, (F) such that A = UDV™,

where D = (d;;) and
dij = 7 Z :]: .
0 i#yJ

5 Tensors

5.1 Quotient Spaces

5.1.1 Notation. Throughout this section, F' denotes an arbitrary field (no longer restricted to R or C) and
V' denotes a vector space over F.

5.1.2 Definition. Let V be a vector space over F. Let W <V, v € V. The coset of W in V, containing
v,isv+W ={v+w:we W} We use the notation V/W = {v + W : v € V}. Additionally, we shall
sometimes denote v + W = v when the subspace W is clear.

4Definition 4.8.7 was presented on July 8, before the proof of the Singular Value Decomposition] Theorem.
5We avoid using o; to avoid confusion with singular values.
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5.1.8 Remark. Let W < V. Note that a+ W =0+ W <= a—b € W, and in particular a + W =
0+ W <= aeW.

5.1.4 Proposition. Let W < V. Then V/W is a vector spaces over F when equipped with the operations
(a+W)+DO+W)=(a+b)+W ala+ W) = (aa) + W.

Proof. These operations satisfy the vector space axioms since V' is a vector space. We just need to check that
they are well-defined. Accordingly, suppose a,b,a’,b’ € V such that a+W = a'+W and b+W = b'+W. Then
a—a’ € Wand b—b' € W, so (a+b)—(a'+b") = (a—a')+(b—b") € W, and therefore (a+b)+W = (a’+b')+W.
Furthermore, ca—aa’ = a(a—a') € W, so (aa)+W = (aa’)+W. Therefore these operations are independent
of the choice of coset representative, so we’re done. H

5.1.5 Example. In P3(R)/P,(R), 623 — 522 + 22 — 1 = 623.

5.1.6 Definition. Let VW be vector spaces over F. We say that V and W are isomorphic and write
V =2 W when there exists an invertible linear transformation 7: V' — W. We call such an invertible linear
transformation an isomorphism.

5.1.7 Theorem (First Isomorphism Theorem for Vector Spaces). Let V,W be vector spaces over F. Let
T:V = W be linear. Then V/Null(T) 2 T (V) < U wia the isomorphism v +— T(v).

Proof. Define ¢: V/Null(T) — U by ¢(©) = T(v). We claim that ¢ is a well-defined injective linear
transformation. Note that if w = v € V/Null(T'), then v — v € Null(T), so T(u —v) = 0. Thus ¢(u) =
T(u) = T(v) = ¢(D), so ¢ is well-defined. Let Z,7 € V/Null(T), a € F. Then

o(aT +7) = plar ty) =T(azx+y) = aT(z) + y = ap(T) + ¢(7),

so ¢ is linear. Finally, suppose that © € Null(p). Then p(v) = T'(v) = 0, so v € Null(T) = 0. Thus ¢ is
injective. It follows that V/Null(T) =2 T'(V'), as required.

5.1.8 Example. Let V = My(R). Let W ={A €V : A= AT}. Then

1 2 0 0
R R

5.1.9 Proposition. Let V' be a finite-dimensional vector space over F. Let W be a subspace of V. Say
{v1,v2,...,Vm} is a basis for W. Then extend this basis to a basis for V, {v1,v2,...,Vm, Vmi1,-..,Un}, where
n=dimV. Then {Umi1,Umt2;---+0n} i a basis for V/W. In particular, dim(V/W) = dimV — dim W.

Proof. Let v=v+ W € V/W. Say v =Y., a;v;, where ay,as,...,a, € F. Then

v= Am+1Um+1 + Am+2UVm+2 + - Fapvy = Am+1Um+1 + Am+2Vm+2 +---+ anma

so this set spans V. Now suppose b +10m+1 + dm+2Umtze + -+ + b0, = 0 for some b1, b2, .., 0, €
F. Then by11Vmy1 + bmyoUmys + -+ + bpv, € W, 80 byyp1 = bpgo = -+ = b, = 0. Therefore
{Um+1,Umi2,---,Un} is a linearly independent spanning set, i.e., a basis, for V/W. el

5.2 Tensor Products

5.2.1 Example. Let (a,b) € C2. Let S = {(a,b) — (b,a) : a,b € C} and let W = Span(S). In CZ/W,
(a,b) — (bya) =0, so (a,b) = (b,a).

5.1 Remark. Similarly to the above example, our goal is to turn a vector space V into a ring (T'(v), +, ®)
with an additional bilinear scalar multiplication operation.

5.2.2 Definition. Let X be a set of algebraically independent symbols. We define the free vector space on
X over F by
V =Free(X) ={a1x1 + avxo+ -+ apxp :a; € F, z; € X},

with addition defined by >~ ayx; + > Bix; = > (a+ B)x; and scalar multiplication by A > a;z; = > Ajayx;.
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5.2.3 Example. Let F =R and X = {x,h, ®}. Then in Free(X),

<*+2h125©> + (2*2u+;©> =x+ 05— 70,

which we denote simply by x — 7©.
5.2.4 Remark. By construction, X is a basis for Free(X).
5.2.5 Definition. Let VW be finite-dimensional vector spaces over F. Let X =V x W, treated as a set
of symbols. Let S be the set of vectors in Free(X) of one of the forms
o (z+y,2)—(2,2) = (y,2)
o (zx+y)—(22) - (z,9)
e a(z,y) - (az,y)
e a(x,y) — (ray).
We define the tensor product of V and W to be V@ W: Free(X)/ Span(S).

5.2.6 Notation. In V @ W, we denote (v,w) = v @ w. Elements of this form are called pure tensors.

5.2.7 Remark. In VW | note that (v+w)®z—v®z—w®z = 0Q0 =: 0. Therefore (v+w)®z = VRz+wWRz.
Also, a(v@w) = (aw) @ w = v ® (aw).

July 17

5.2.8 Example. Consider C? ®c C3. (This notation means that we are using the field of scalars C.) Let
the standard bases for C? and C? be oy = {a1,a2} and o3 = {b1, b, b3} respectively. Then

(1, 2) (24 (1, 2, 3) = (al + 2(12) X (bl + 2by + 3b3)
=a1 ® (b1 + 2by + 3b3) + 2((12 X (bl + 2by + 3b3))
= (a1 &® bl) + 2(@1 X bg) + 3(a1 X b3> + 2(@2 X bl) + 4(a2 X bg) + 6(@2 X b3)

5.2.9 Proposition. Let V,W be finite-dimensional vector spaces over F. Suppose that {v1,va,...,v,} and
{wi,wa,...,wy} are bases for V. and W respectively. Then a basis for V@r W is

{viow;:1<i<n, 1<j<m}
In particular, dimp (V @ W) = nm = dimp (V) dimg (W).

5.2.10 Theorem (Universal Property of Tensor Products). Let V, W, Z be vector spaces over some field F.
Let ¢: V. x W — Z be bilinear. Then there exists a unique linear transformation T: V @ W — Z defined by
T(w®w)=p(v,w). Moreover, all linear transformations V@ W — Z can be constructed in this way.

5.2.11 Remark. Let V be a finite-dimensional vector space over F. Let {v1,va,...,v,} be a basis for V. For
each 1 < i <n, define v}: V — F by v (v;) = §;; for 1 < j <n. Then {v],v;,...,v}} is a basis for V*.
5.2.12 Notation. Let V,W be finite-dimensional vector spaces over F. We denote the collection of linear
transformations from V to W by L(V,W). Note that L(V,W) is a vector space over F.

5.2.13 Example. Let V, W be finite-dimensional vector spaces over F. We show that V*@r W = L(V,W).
Define ¢: V*xW — L(V,W) by ¢(f,w)(v) = f(v)w, where v € V is arbitrary. Confirm that ¢ is bilinear
and well-defined. By the Universal Property, there is a linear transformation T: V* @ p W — L(V, W) such
that T'(f ® w) = ¢(f, w). We will show that T is an isomorphism by explicitly constructing its inverse. July 19
Let {w1,wa,...,wn} be a basis for W. Define a basis for W* by {w},ws,...,w},} as in Remark 5.2.11.
Define U: L(v,w) = V*@p W by U(F) = Y 1" (wf o F) @ w;. Let v € V. Say F(v) = Y_" | a;w;, where
ay,0Q,...,0,, € F. Then

(TU)(F)(v) = T (Zwm ® w> () =D wi (F@)ws =3 i | Yoy | wi=3 aw, = F(v),

i=1 i=1 i=1

so U = T~1, and therefore T is an isomorphism, as claimed.
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5.3 Tensor and Exterior Algebras

5.3.1 Definition. Let F' be a field. An F-algebra is a vector space A over I’ equipped with a multiplication
map -: A x A — A such that

ea-(b-c)=(a-b)-c

ea-(b+c)=a-b+a-c

e (a+b)-c=a-c+b-c

e afa-b)=(aa) -b=a-(abd)
for all a,b,c € A, a € F.

5.3.2 Definition. Let V be a vector space over F. For k € N, we define T*(V) = ®f:1 V. Elements of
T*(V) are called k-tensors. We also define T°(V) = F.

5.8.8 Aside. Let V be a vector space over F. Let Wi, Wy, W3,... < V. We define the direct product of
Wl,WQ,Wg.‘. to be

oo
Hwi = {(a1,az,as,...): a; € W;}
i=1
and the direct sum of W7, W5, W3... to be
o0
@Wi ={(a1,a9,as,...): a; € Wy, a; =0 for all but finitely many ¢}.
i=1
We denote (a1, az,as,...) € 69;21 W; by a1 + az + a3 + - - -. Note however, that this is notation only; we are
not using addition in V.

5.3.4 Example. For i =0,1,2,..., define W; = Spang{z'}. Then @;°, W; = R[z].

5.3.5 Definition. We define the tensor algebra of V by T(V) = @;,T*(V). Elements of T'(V) look like
finite linear combinations of k-tensors.

5.3.6 Example. Let F' =R and let V be a vector space over R. Let z,y € V. Then
3+2(r®y) — %(x@x@y)+87(x®x®x®x®x) eT(V).
5.3.7 Definition. In 7T'(V'), multiplication is defined by
(MU Qug)(UI QUIR -+ Q) =11 QU @ QU QU QUua @+ ® Uy

and then extended by distributivity.

5.3.8 Definition. Let V be a vector space over F. Let A(V) in T(V) be the ideal generated by elements
of the form v ® v, where v € V. We define the exterior algebra of V by A(V) =T(V)/A(V), equipped with
operations given by T+ 7=z +y, af =ax, and Ty =7y for all z,y € T(V), a € F.

5.8.9 Notation. In A(V'), we denote v1 ® v ® -+ @ vg by v1 Avg A+« A vg.
5.3.10 Example. In A(V),

O=@+yAN(x+y)=zAhz+zAyt+yAzt+yAy=xAy+yAuz,

so x Ay =—(y Az). Similarly, a AbAcAaAe=0. Note that 0 @ v =0(0®v) =0 for any v € V.
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6 Functional Analysis

6.1 Definition. Let (V,] - ||) be a normed vector space.

(1) We say that a sequence (x,) in V' converges to x € V', denoted z,, — z, if for all € > 0, there exists
N € Nsuch that foralln e N, n > N = |z, —z| <e.

(2) We say that a sequence (x,) in V is Cauchy if for all € > 0, there exists N € N such that for all
nmeN,nm>N = |z, —z,| <e.

(3) We say that V is complete if every Cauchy sequence in V' converges in V.
(4) If V is complete, we call it a Banach space.

(5) If V is a Banach Space and the norm on V is defined by ||v|| = y/(v,v) for some inner product (-,-) on
V', we call V a Hilbert space.

6.2 Example. (R™, || -||) and (C™,|| - ||) are Hilbert spaces. In fact, they are the only finite-dimensional
Hilbert spaces, up to isomorphism.

6.3 Definition. Define

coo = {(@n)pry : Ty, € R, z, = 0 for all but finitely many n € N}

n=

co = {(xn)%ozl txy € R nh_}n;o Ty = 0}

A norm on ¢gp and ¢ is given by |[(2)|lcc = maxpen{|zna|}

6.4 Example. Let z, = (1, %, %, ceey %,0,0,...). We claim that (z,) € cgo is Cauchy. Accordingly, let
€ > 0. Choose n € N such that % < &. Suppose n,m > N; without loss of generality assume n < m. Then
1

n+1
)

1 <
N

< E.

Sl
IN

[Zn — ZTmlleo =

& coo- By the uniqueness of limits, it follows that

bl

Wl

However, it is clear that z,, — x, where x = (1, %7
coo is not a Banach space.

6.5 Example. (co, || - ||s) is a Banach space, for reasons apparent from the preceding example.

6.6 Definition. Define

> = {(an)zol tap € R, supa,| < oo}.
neN

A norm on £ is given by ||(an)|/cc = sup,en{lan}-

6.7 Example. We claim that (¢*°,|| - ||) is a Banach space. Let (z,,) be a Cauchy sequence in ¢>°. We

write
Ty = (m,(zl),xg),ng),...).

Let € > 0. Then there exists Ny € N such that |z, — Tp[|ec < § for n,m > Ny. Then for every i € N, for
n,m > Np, we have

€
< |ln — Tmlloo < = < e

]xgp 0
2

Therefore the component sequences are Cauchy, hence convergent. Say each (asgf )) converges to a; as n — oo.
Let = (a1, az,as, ...). We claim that « € £>°. Note that there exists N2 € N such that ||z, —Zm|le < 1

for n,m > Ny. Then for n,m > Ny, i € N,

< |@n — Tmlloo < 1.

o) — (2

Now,

’ng) —a;| = lim x,(f) —z0 <1

m
m— o0

)
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so for n > No,

a; — x4+ ng) x”')

n

< sup { ‘ai — )
ieN

} <1+ [|2n]loe < 0.
€N ieN

Therefore x € £*°.
Now claim that z, — x. For i € N, n,m > Ny,

‘ngl) —mﬁf) < |@wm — Tnlloo < <.

2
Then
‘xffl) —a;| = lim ‘ @) _ 20| < =)

n— oo -2

For m > Ny,
Jm = 2lloe = sup [f) — o < 5 <.

ieN 2

Therefore x, — x. It follows that (£°°,]| - ||) is & Banach space.

6.8 Remark. A closed subset of a Banach space is also a Banach space.
6.9 Example. ¢y C ¢*° is a Banach space.

6.10 Definition. Let p € [1,00). Let (a,)52; be a sequence in R. Define the | - ||, to be

[(an)llp = (Z Ian|p>

6.11 Fact. (¢*,|-||,) is a Banach space. When p =2, (? is a Hilbert space, where ((ay), (bn)) = > oo | anbp.

Define 7 = {(an)n : [|(an)|p < oo}

6.12 Fact. Let (V.| -||) be a normed vector space. Then the parallelogram law holds in V if and only if | - ||
is induced by an inner product.

6.13 Example. We claim that ¢*° is not a Hilbert space. Let x = (1,0,0,...), y = (0,1,0,...). Then
o+l + llz —yl5 =12 + 12 =2 # 4 =2(1 + 1) = 2(||z[|3, + [ly]%)-
Therefore the parallelogram law does not hold in £°°, so £*° is not a Hilbert space by Fact 6.12.
6.14 Fact. ((P,| - |l,) s a Hilbert space if and only if p = 2.
6.15 Remark. Using the same z,y as in Example 6.13, but in ¢ instead of ¢>°, we have
le 4yl +lle =yl = (17 +17)7 + (1P +17)7 = 207!

while
2|z + 1lyll) = 2(1 + 1) = 4.

Clearly equality does not hold unless p = 2, which gives some insight into Fact 6.14.
6.16 Definition. Let V, W be normed vector spaces. Let T: V — W be linear. We say that
(1) T is continuous at v € V if for all € > 0, there exists § > 0 such that for all x € V,
lo—oll <6 = |T(@) - TW)|| <<
(2) T is continuous if it is continuous at every v € V.

(3) T is bounded if there exists C' > 0 such that ||T(x)| < C||z| for all z € V.
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6.17 Theorem. Let V,W be normed vector spaces. Let T: V. — W be linear. The following are equivalent:

1) T is continuous.

2) T is continuous at 0.

(1)
(2)
(3) T is bounded.
(4) ny = sup{||T(z)| : [|lz]| <1} <ooc.
(5)

5) ng = sup{||T(2)]| : [lz] =1} < oco.

Proof. (1) = (2) Trivial.
(2) = (3) Suppose T is continuous at 0. Then there exists § > 0 such that ||z| < § = ||T(z)| < 1.
For0#xz €V,
i (ste)] <
2|||] 2||| ’

since Hﬁx” < §. Therefore
2
1@ < 2,

so we set C' = % and the result follows.

(3) = (4) Suppose T is bounded. Say ||T(x)| < C|z|l, C > 0. Then for z € V with ||z|]| < 1,
IT(z)|| < Cllz|| < C,s0n <C < o0.

(4) = (5) Trivial.

(5) = (1) Suppose ny < co. Let v € V. Let € > 0. Choose § = —<7. Suppose z € V with [z —v[| < 4.
If x = v then ||T(x) — T'(v)|| = 0 < e. Otherwise,

Tr — v
I7(2) - T()] = [Tz - v)]| = HT ()\ & — vl < malle — o < nod <c,

[l —of

so T is continuous. This completes the proof. H

6.18 Remark. Suppose T: V — W is continuous and ni,ns are defined as in Theorem 6.17. Clearly no < n;.
If 2 € V with 0 < |lz]| < 1, we have

(5] e s

so [|T(z)|| < na|lz|| < ng. Therefore ny < ng, so ny = ny. We can use ns to define the operator norm given

by
1T = Sup. 1T (z)||-

xl||=

This completes the course. &)
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