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1. Introduction

The theory of D-rings was developed in a series of papers by Moosa and Scanlon
(see [2], [3], [4]) as a unification and generalization of the theory of differential rings
and that of difference rings. Given a algebra B of finite rank ` over a base ring A, a
D-ring is an A-algebra R together with an A-algebra homomorphism e : R→ R⊗A
B. One may also consider the homomorphism e coordinate-wise given some basis
ε for B by working with the sequence ∂ of operators on R such that e(r) = ∂0(r)⊗
ε0 + · · · + ∂`−1(r) ⊗ ε`−1. The latter presentation allows the theory of D-rings to
be axiomatized, while the former allows analysis using methods from commutative
algebra. By imposing additional restrictions on the data, one can recover difference
and differential rings, as outlined in Example 3.6 of [4]. Moosa and Scanlon focused
on the model theory and geometry of D-rings and their associated operators—
particularly that of D-fields of characteristic zero—but “[left] to to future work
the systematical classification of the operators on A-algebras which it covers” ([4],
Section 3.7). We shall consider this classification in the case when A is a field K.

We begin in Section 2 by presenting definitions and notation, then develop the
algebra of D-rings necessary for subsequent sections, culminating in a proof of the
First Isomorphism Theorem. In Section 3, we give the construction of a free D-ring,
building on Example 3.8 of [4], and present a universal property which characterizes
it. This example is used in the proof of an important proposition in Section 4.
There, we turn to the classification of D-operators, building on ideas introduced in
[6]. The effect of the choice of basis ε is studied and a notion of equivalence under
different bases for B is developed. We show that given certain assumptions on B,
all D-operators are equivalent to generalized derivations—that is, with a certain
choice of basis, they satisfy a generalized Leibniz rule—and similarly that any
operator satisfying this rule is a D-operator. Finally, in Section 5, we consider the
concept of competency—a certain condition conjectured in [1] to hold whenever
K is algebraically closed and B is local, motivated by the classification of such
algebras given in [5]. We show that to give a complete classification of D-operators
it suffices to consider the local case. We then prove a weaker condition which holds
for all local K-algebras, whether or not K is algebraically closed.
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2. Preliminaries

All rings are commutative and unitary, and all algebras are associative. The
ring unit is contained by all subrings and subalgebras and preserved by all ring and
algebra homomorphisms. The natural numbers N are assumed to include 0.

Fix the following data for the duration of this paper:

(I) a base field K,
(II) a K-algebra B of finite rank `,

(III) a basis ε = (ε0, . . . , ε`−1) for B.

Observe that K plays the role of the ring A in [4]. Given a K-algebra R, we denote
R⊗K B by D(R). In particular, D(K) = K ⊗K B ' B, meaning that our notation
is consistent with that of [4], which referred to the algebra B as D(K). We shall
write D to denote the pair (B, ε).

Definition 2.1. A D-ring is a K-algebra R together with an `-tuple of operators
∂ = (∂0, . . . , ∂`−1) on R such that the map e : R→ D(R) given by

e(r) :=

`−1∑
i=0

∂i(r)⊗ εi

is a K-algebra homomorphism. If R is an integral domain, we say that (R, ∂) is an
integral D-ring. The sequence ∂ is called a D-operator. Observe that by insisting
that ∂0 = idR we obtain the definition given in [4].

This section develops the foundations—morphisms, ideals, and quotients—of
the algebra of D-rings and D-operators necessary for the rest of this paper. In
particular, its content will be used in the construction of the free D-ring in Section
3 and the partial classification of D-operators in Section 4. Several examples of D-
rings and D-operators and their associated homomorphisms can be found in Section
3 of [4].

Lemma 2.2. If (R, ∂) is a D-ring, then ∂i is K-linear for i = 0, . . . , `− 1.

Proof. For any p, q ∈ R and λ ∈ K,

`−1∑
i=0

∂i(p+ λq)⊗ εi = e(p+ λq) = e(p) + λe(q) =

`−1∑
i=0

(∂i(p) + λ∂i(q))⊗ εi.

The result follows by matching coefficients. �

Definition 2.3. Let (R, ∂) be a D-ring. A D-subring is a subalgebra S of R such
that ∂i(S) ⊆ S for i = 0, . . . , ` − 1. Note that (S, ∂S) is also D-ring, where ∂S is
the restriction of ∂ to S.

Definition 2.4. Let (R, ∂) and (R′, ∂′) be D-rings. A D-morphism from R to R′ is
a K-algebra homomorphism φ : R→ R′ such that ∂′i ◦φ = φ◦∂i for i = 0, . . . , `−1.
If φ is bijective, then we say that it is a D-isomorphism and that (R, ∂) and (R′, ∂′)
are D-isomorphic.

Proposition 2.5. Let (R, ∂) and (R′, ∂′) be D-rings with associated homomor-
phisms e and e′. Suppose that φ : R→ R′ is a homomorphism. Then the following
are equivalent:

(i) φ is a D-morphism,
(ii) e′ ◦ φ = (φ⊗ idB) ◦ e.
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Proof.

φ is a D-morphism ⇐⇒ ∂′i ◦ φ = φ ◦ ∂i for i = 0, . . . , `− 1

⇐⇒
`−1∑
i=0

∂′i(φ(r))⊗ εi =

`−1∑
i=0

φ(∂(r))⊗ εi for all r ∈ R

⇐⇒ e′(φ(r)) = (φ⊗ idB)(e(r)) for all r ∈ R
⇐⇒ e′ ◦ φ = (φ⊗ idB) ◦ e. �

Remark 2.6. Proposition 2.5 shows that φ is a D-morphism if and only if the
following diagram commutes:

R D(R)

R′ D(R′)

e

φ φ⊗idB

e′

Definition 2.7. Let (R, ∂) be a D-ring. A D-ideal is an ideal I ⊆ R such that
∂i(I) ⊆ I for i = 0, . . . , `− 1.

Proposition 2.8. Let (R, ∂) be a D-ring. Suppose that I is a D-ideal of R. Then
(R/I, ∂̄) is a D-ring, where ∂̄i : R/I → R/I is given by ∂̄i(r + I) = ∂i(r) + I.

Proof. We must show that ∂̄ is well-defined. Suppose p− q ∈ I for some p, q ∈ R.
Then ∂i(p)−∂i(q) = ∂i(p−q) ∈ I for i = 0, . . . , `−1. It follows that ∂̄ is well-defined.

To show that (R/I, ∂̄) is a D-ring, we must show that the map ē : R/I → D(R/I)
given by

ē(r + I) =

`−1∑
i=0

∂̄i(r + I)⊗ εi

is a K-algebra homomorphism. Let φ : R → R/I be the canonical quotient map.
Since φ is surjective, it suffices to show that the following diagram commutes:

R D(R)

R/I D(R/I)

e

φ φ⊗idB

ē

For any r ∈ R,

ē(φ(r)) = ē(r + I) =

`−1∑
i=0

∂̄(r + I)⊗ εi =

`−1∑
i=0

(∂(r) + I)⊗ εi = (φ⊗ idB)(e(r)).

Therefore the square commutes, implying that (R/I, ∂̄) is a D-ring. �

Theorem 2.9 (First Isomorphism Theorem for D-rings). Let (R, ∂) and (R′, ∂′)
be D-rings. Suppose that φ : R→ R′ is a D-morphism. Then the following hold:

(i) kerφ is a D-ideal of R,
(ii) φ(R) is a D-subring of R′,
(iii) R/ kerφ and φ(R) are isomorphic as D-rings when equipped with operators

as in Proposition 2.8 and Definition 2.3 respectively.

Proof.
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(i) Since φ is a K-algebra homomorphism, kerφ is an ideal of R. If r ∈ kerφ,
then φ(∂i(r)) = ∂′i(φ(r)) = ∂i(0) = 0, so kerφ is closed under ∂i. Therefore
kerφ is a D-ideal of R.

(ii) Similarly, φ(R) is a subring of R′. Since ∂′i ◦φ = φ◦∂i, φ(R) is closed under
∂′i. Therefore φ(R) is a D-subring of R′.

(iii) Let I = kerφ. Let S′ = φ(R). Define ψ : R/I → S′ by ψ(r + I) = φ(r) for
i = 0, . . . , ` − 1. Then ψ is a well-defined K-algebra isomorphism. Define
∂̄ : R/I → R/I by ∂̄i(r + I) = ∂i(r) + I. For ease of notation, denote the
restriction of ∂′ to S′ simply by ∂′. For any r ∈ R,

∂′i(ψ(r + I)) = ∂′i(φ(r)) = φ(∂i(r)) = ψ(∂i(r) + I) = ψ(∂̄i(r + I)).

Therefore ψ is a D-morphism. �

3. The Free D-ring

Definition 3.1. We say that a D-ring (R, ∂) is generated by an element r ∈ R if
there is no proper D-subring of R containing r.

The following construction was given in Example 3.8 of [4] to illustrate the sense
in which D-operators are free—the D-structure alone does not force any non-trivial
functional equations to hold among the operators. Since it will be used in the proof
of a result in Section 4, we repeat it here in more detail.

Definition 3.2. Define Σ to be the alphabet {ð0, . . . ,ð`−1}. Let K{x} be the
commutative polynomial algebra over K in variables ξx, where ξ ∈ Σ∗. Choose
ai,j,k, ci ∈ K such that

εiεj =

`−1∑
k=0

ai,j,kεk,

and

1B =

`−1∑
k=0

ckεk.

Define K-linear operators ð = (ð0, . . . ,ð`−1) on the K-vector space generators of
K{x} by

ðk(1) = ck,

ðk(ξx) = ðkξx for all ξ ∈ Σ∗,

and

ðk(ξ1x · · · ξnx) =

`−1∑
i=0

`−1∑
j=0

ai,j,kði(ξ1x)ðj(ξ2x · · · ξnx) for all ξ1, . . . , ξn ∈ Σ∗,

where n ≥ 2. A straightforward induction verifies that each ðk is well defined and
that the map f : K{x} → K{x} ⊗B given by

f(r) :=

`−1∑
k=0

ðk(r)⊗ εk

is a K-algebra homomorphism. Therefore (K{x},ð) is a D-ring, which we refer to
as the free D-ring in one generator and denote by Free(D).
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Lemma 3.3. The D-ring Free(D) is generated by the indeterminate x.

Proof. Suppose that S ⊆ K{x} is a D-subring containing x. We claim that ξx ∈ S
for all ξ ∈ Σ∗. Proceed by induction on length(ξ). Observe that since x ∈ S, all
strings ξx where length(ξ) = 0 are in S.

Assume that ξx ∈ S for all ξ ∈ Σ∗ with length(ξ) = n for some n ∈ N. Any
string in Σ∗ of length n+ 1 must be of the form ðiξ for some i ∈ {0, . . . , `− 1} and
ξ ∈ Σ∗, where length(ξ) = n. Then ðiξx = ði(ξx) ∈ S since S is closed under ði.
It follows that ξx ∈ S for all ξ ∈ Σ∗.

This shows that all the K-algebra generators of K{x} are contained in S, and
therefore K{x} ⊆ S. It follows that there is no proper D-subring of K{x} contain-
ing x, i.e., Free(D) is generated by x. �

Theorem 3.4 (Universal Property). Suppose that (R, ∂) is a D-ring generated by
a single element r ∈ R. Then there exists a surjective D-morphism from Free(D)
to (R, ∂) given by mapping the generator x ∈ K{x} to r.

Proof. Let e : R → D(R) and f : K{x} → D(K{x}) be the K-algebra homomor-
phisms induced by the operators ∂ and ð. Define φ : K{x} → R by

φ(1) = 1,(3.4.1)

φ(x) = r,(3.4.2)

φ(ðiξx) = ∂i(φ(ξx)) for ξ ∈ Σ∗ and i ∈ {0, . . . , `− 1}.(3.4.3)

Then φ gives a K-algebra homomorphism, since φ is defined on each K-algebra
generator of K{x}. By Remark 2.6, to show that φ is a D-morphism it suffices to
show that the following diagram commutes:

K{x} D(K{x})

R D(R)

f

φ φ⊗idB

e

Since all maps in the diagram are K-algebra homomorphisms, it suffices to check
that the diagram commutes for each K-algebra generator of K{x}. First note that

e(φ(x)) = e(r) =

`−1∑
i=0

∂i(r)⊗ εi =

`−1∑
i=0

φ(ði(x))⊗ εi = (φ⊗ idB)(f(x)).

Let j ∈ {0, . . . , `− 1} and ξ ∈ Σ∗. Then

e(φ(ðjξx)) = e(∂j(φ(ξx)))

=

`−1∑
i=0

∂i(∂j(φ(ξx)))⊗ εi

=

`−1∑
i=0

φ(ðiðjξx))⊗ εi

= (φ⊗ idB)(f(ðjξx)).

It follows that e ◦ φ = (φ⊗ idB) ◦ f and therefore φ is a D-morphism. By Theorem
2.9, φ(R) is a D-subring of R containing r. Since R is generated by r, the image of
φ is equal to R, i.e., φ is surjective. �
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Remark 3.5. Note that in fact φ is completely determined by φ(x), as the identities
(3.4.1) and (3.4.3) are necessary in order for φ to be a K-algebra homomorphism
and a D-morphism, respectively.

Corollary 3.6. If (R, ∂) is a D-ring generated by a single element, then R is
D-isomorphic to a quotient of K{x}.

Proof. Define φ as in Theorem 3.4 so that R ' K{x}/ kerφ. �

Corollary 3.7. Suppose that (R, ∂) is a D-ring generated by r ∈ R. Suppose
that (R, ∂) satisfies the Universal Property given in Theorem 3.4. Then (R, ∂) is
D-isomorphic to Free(D).

Proof. Let φ : K{x} → R and ψ : R→ K{x} be the surjective D-morphisms given
by defining φ(x) = r and ψ(r) = x. We claim that ψ = φ−1. It suffices to check
that ψ(φ(ξx)) = ξx for all ξ ∈ Σ∗, as these are the K-algebra generators of K{x}.

Accordingly, fix some ξ ∈ Σ∗. Then ξ = ðt0 . . . ðtk for some natural numbers
t0, . . . , tk ≤ `− 1. It follows that

ψ(φ(ξx)) = ψ(φ(ðt0 . . . ðtkx)) = ψ((∂t0 ◦ · · · ◦ ∂tk)(φ(x))) = ðt0 . . . ðtkψ(φ(x)) = ξx

as both φ and ψ are D-morphisms. �

4. A partial classification of D-operators

Building on Sánchez and Moosa’s preliminary work in [6], we give a classification
of D-operators given certain assumptions on B and ε. In particular, we develop a
notion of equivalence of D-operators which corresponds to a change of basis on B
and show that when our assumptions hold, D-operators on a ring R are precisely
those which satisfy a generalized Leibniz rule.

Throughout this section, fix the following data:

(IV) a K-algebra B′ of rank `,
(V) a basis ε′ = (ε′0, . . . , ε

′
`−1) for B,

Additionally, fix a natural number m for the duration of this paper.
We shall write D′ to denote the pair (B′, ε′). We assume that Nm is equipped

with the product order ≤. We shall denote the m-tuple (0, . . . , 0) ∈ Nm by 0 and
the m-tuple of indeterminates (x1, . . . , xm) by x. For any α ∈ Nm, we write xα to
denote the monomial xα1

1 · · ·xαmm .

Definition 4.1. Let R be a K-algebra. Suppose that (R, ∂) is a D-ring and (R, ∂′)
is a D′-ring. We say that ∂ and ∂′ are equivalent if there exists M ∈ GL`(K) such
that ∂′ = M∂, where ∂ and ∂′ are considered as column vectors.

Proposition 4.2. The following are equivalent:

(i) there exists M ∈ GL`(K) such that if (R, ∂) is a D-ring then (R,M∂) is a
D′-ring,

(ii) there exists M ∈ GL`(K) such that if (R, ∂) is an integral D-ring then
(R,M∂) is an integral D′-ring,

(iii) for all D-rings (R, ∂), there exists M ∈ GL`(K) such that (R,M∂) is a
D′-ring,

(iv) for all integral D-rings (R, ∂), there exists M ∈ GL`(K) such that (R,M∂)
is an integral D′-ring,

(v) there exists a K-algebra isomorphism φ : B → B′.
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Proof. (i) =⇒ (ii), (i) =⇒ (iii), and (ii) =⇒ (iv) are immediate.
(iii) =⇒ (v). For i = 0, . . . , `− 1, define ∂i : B → B by

`−1∑
j=0

ajεj 7→ ai.

Then for any linear combination r =
∑`−1
i=0 aiεi we have

`−1∑
i=0

∂i(r)⊗ εi =

`−1∑
i=0

ai ⊗ εi = 1⊗
`−1∑
i=0

aiεi = 1⊗ r.

It follows that the map e : B → D(B) given by

e(r) =

`−1∑
i=0

∂i(r)⊗ εi = 1⊗ r

is a K-algebra homomorphism, i.e., (B, ∂) is a D-ring. Let M ∈ GL`(K) such that
(B,M∂) is a D’-ring. Let φ : B → B′ be the K-vector space isomorphism via K`

given by M and the bases ε and ε′. That is, letting

M =

 λ0,0 · · · λ0,`−1

...
. . .

...
λ`−1,0 · · · λ`−1,`−1


define φ by

`−1∑
i=0

aiεi 7→
`−1∑
i=0

`−1∑
j=0

λi,jajε
′
i.

We will show that φ is in fact a K-algebra isomorphism. In particular, we show
that the following diagram commutes, where e′ : B → D′(B) is the K-algebra
homomorphism induced by M∂.

B D(B)

B′ D′(B)

e

φ
e′

1B⊗φ

r 7→1B⊗r

For any linear combination r =
∑`−1
i=0 aiεi, we have

e′(r) =

`−1∑
i=0

(M∂)i(r)⊗ ε′i =

`−1∑
i=0

`−1∑
j=0

λi,j∂j(r)⊗ ε′i =

`−1∑
i=0

`−1∑
j=0

λi,jaj ⊗ ε′i = 1B ⊗ φ(r).

It follows that φ is a K-algebra homomorphism. Since φ is a K-vector space iso-
morphism, its kernel is trivial, so φ is in fact a K-algebra isomorphism.

(iv) =⇒ (v). For i, j, k = 0, . . . , `− 1, fix ai,j,k, a
′
i,j,k, ck, c

′
k ∈ K such that

1B =

`−1∑
k=0

ckεk, 1B′ =

`−1∑
k=0

c′kε
′
k, εiεj =

`−1∑
k=0

ai,j,kεk, ε′iε
′
j =

`−1∑
k=0

a′i,j,kε
′
k.
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Consider the case when (R, ∂) = Free(D) = (K{x},ð), as constructed in Example
3.2. Let M ∈ GL`(K) such that (K{x},Mð) is a D′-ring. Write

M =

 λ0,0 · · · λ0,`−1

...
. . .

...
λ`−1,0 · · · λ`−1,`−1



As before, let φ : B → B′ be the K-vector space isomorphism via K` given by M
and the bases ε and ε′. We will show that φ is in fact a K-algebra isomorphism.
Clearly φ is K-linear and bijective. Furthermore,

1R ⊗ 1B′ = e′(1R)

=

`−1∑
i=0

(Mð)i(1R)⊗ ε′i

=

`−1∑
i=0

`−1∑
j=0

λi,jðj(1R)⊗ ε′i

=

`−1∑
i=0

`−1∑
j=0

λi,jcj ⊗ ε′i

= 1R ⊗
`−1∑
i=0

`−1∑
j=0

λi,jcjε
′
i

= 1R ⊗ φ(c0ε0 + · · ·+ c`−1ε`−1)

= 1R ⊗ φ(1B).

It follows that φ(1B) = 1B′ .
To show that φ is multiplicative, it suffices to show that φ(εiεj) = φ(εi)φ(εj) for

i, j = 0, . . . , `− 1. Note that

φ(εiεj) =

`−1∑
k=0

`−1∑
n=0

λk,nai,j,nε
′
k(4.2.1)

and

φ(εi)φ(εj) =

`−1∑
k=0

`−1∑
n=0

`−1∑
p=0

λn,iλp,ja
′
n,p,kε

′
k.(4.2.2)
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First note that the elements ðixðjð0x, where i, j = 0, . . . , ` − 1, are distinct and
linearly independent in K{x}. Furthermore,

e′(xð0x) =

`−1∑
k=0

(M∂)k(xð0x)⊗ ε′k

=

`−1∑
k=0

`−1∑
n=0

λk,nðn(xð0x)⊗ ε′k

=

`−1∑
k=0

`−1∑
n=0

λk,n

`−1∑
i=0

`−1∑
j=0

ai,j,nði(x)ðj(ð0x)⊗ ε′k

=

`−1∑
k=0

`−1∑
i=0

`−1∑
j=0

(
`−1∑
n=0

λk,nai,j,n

)
ðixðjð0x⊗ ε′k

and

e′(x)e′(ð0x) =

(
`−1∑
n=0

∂′n(x)⊗ ε′n

)(
`−1∑
p=0

∂′p(ð0x)⊗ ε′p

)

=

(
`−1∑
n=0

`−1∑
i=0

λn,iði(x)⊗ ε′n

)`−1∑
p=0

`−1∑
j=0

λp,jðj(ð0x)⊗ ε′p


=

`−1∑
i=0

`−1∑
j=0

`−1∑
n=0

`−1∑
p=0

λn,iλp,jðixðjð0x⊗ ε′nε′p

=

`−1∑
k=0

`−1∑
i=0

`−1∑
j=0

(
`−1∑
n=0

`−1∑
p=0

λn,iλp,ja
′
n,p,k

)
ðixðjð0x⊗ ε′k

By linear independence, it follows that

`−1∑
n=0

λk,nai,j,n =

`−1∑
n=0

`−1∑
p=0

λn,iλp,ja
′
n,p,k

for i, j, k = 0, . . . , `− 1. By (4.2.1) and (4.2.2), this shows that φ(εiεj) = φ(εi)φ(εj)
for i = 0, . . . , `− 1. Therefore φ is a K-algebra isomorphism from B to B′.

(v) =⇒ (i). Let M be the matrix associated with the isomorphism φ with respect
to the bases ε and ε′, i.e.,

M =

 λ0,0 · · · λ0,`−1

...
. . .

...
λ`−1,0 · · · λ`−1,`−1


where

φ(εj) =

`−1∑
i=0

λi,jε
′
i
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for j = 0, . . . , `− 1. Let (R, ∂) be a D-ring. Then the map e : R→ D(R) given by

e(r) =

`−1∑
i=0

∂i(r)⊗ εi

is a K-algebra homomorphism. Define e′ : R→ D′(R) by

e′(r) =

`−1∑
i=0

(M∂)i(r)⊗ ε′i.

We claim that the following diagram commutes:

R D(R)

D′(R)

e

e′
idR⊗φ

For any r ∈ R,

e′(r) =

`−1∑
i=0

`−1∑
j=0

λi,j∂j(r)⊗ ε′i =

`−1∑
j=0

∂j(r)⊗
`−1∑
i=0

λi,jε
′
i =

`−1∑
j=0

∂j(r)⊗ φ(εj).

It follows that e′ = (idR⊗φ) ◦ e. Therefore e′ is a homomorphism and (R,M∂) is
a D′-ring. �

Remark 4.3. We are particularly interested in the case when the D-ring R is an
integral domain, which is why the cases are treated separately in Proposition 4.2.

Definition 4.4. A nonempty finite set N ⊆ Nm is Young-like if whenever α ∈ N
and β < α we have β ∈ N . Given a Young-like set N , we define N∗ to be the set
of minimal elements of Nm \N .

Definition 4.5. Let R be a K-algebra and N be a Young-like set. A generalized
derivation of type N on R is a collection of operators (∂α)α∈N on R such that

(a) ∂α is K-linear for all α ∈ N ,
(b) for all p, q ∈ R and α ∈ N ,

∂α(pq) =
∑

β+γ=α

∂β(p)∂γ(q),

(c) ∂0(1) = 1.

Lemma 4.6. Let R be a K-algebra and N be a Young-like set. Suppose that ∂ is
a generalized derivation of type N on R. Then ∂α(1) = 0 for all α ∈ N \ {0}.

Proof. Proceed by induction on |α|. If |α| = 1, then

∂α(1) =
∑

β+γ=α

∂β(1)∂γ(1) = ∂0(1)∂α(1) + ∂α(1)∂0(1) = 2∂α(1),

so ∂α(1) = 0. Assume that |α| > 1 and ∂β(1) = 0 for all β ∈ N with 1 ≤ |β| < |α|.
Then

∂α(1) =
∑

β+γ=α

∂β(1)∂γ(1) = 2∂0(1)∂α(1) +
∑

β+γ=α
β,γ 6=0

∂β(1)∂γ(1) = 2∂α(1),

so ∂α(1) = 0. �



OPERATORS ON RINGS 11

Definition 4.7. We say that an antichain T ⊆ Nm is full if the ideal I generated
by the set {xα : α ∈ T} ⊆ K[x] is proper and zero-dimensional, i.e., the K-
algebra K[x]/I is non-trivial and finite-dimensional as a K-vector space. Given a
full antichain T , we define T ∗ to be the set {α ∈ Nm : ∀β ∈ T, β � α}. Note that
the only Young-like antichain of Nm is {0}, which is not full. This ensures that our
notation is unambiguous. We say that K[x]/I is of type T .

Remark 4.8. Definition 4.7 seems at first somewhat unmotivated and arbitrary.
However, the classification of local K-algebras of rank less than 7 given in [5] shows
that

(i) all local K-algebras of rank less than 4 are isomorphic to an K-algebra of
type T for some full antichain T ,

(ii) of the 5 isomorphism classes of local K-algebras of rank 4, at least 4 admit
a a representative of type T for some full antichain T ,

(iii) of the 10 isomorphism classes of local K-algebras of rank 5, at least 7 admit
a a representative of type T for some full antichain T ,

(iv) of the 33 isomorphism classes of local K-algebras of rank 6, at least 14
admit a representative of type T for some full antichain T .

We shall discuss reducing the classification to the case when B is local in more
detail in Section 5.

Proposition 4.9. Suppose that N ⊆ Nm is a Young-like set and T ⊆ Nm is a full
antichain. Then the following hold:

(i) N∗ is a full antichain,
(ii) T ∗ is a Young-like set,

(iii) (N∗)∗ = N ,
(iv) (T ∗)∗ = T .

Proof.

(i) Suppose that α, β ∈ N∗ are distinct. If α < β, then β is not minimal
in Nm \ N . Similarly we must have β ≮ α. It follows that α and β are
incomparable. Therefore N∗ is an antichain.

It remains to show that N∗ is full, i.e., that the ideal I generated by
{xα : α ∈ N∗} ⊆ K[x] is proper and zero-dimensional. Since 0 ∈ N ,
0 /∈ N∗, so 1 /∈ I and therefore I is proper. We will show that all but finitely
many monomials are in I, which shows that K[x]/I is finite-dimensional.
Let α ∈ Nm \ N . By definition of N∗, there is some β ∈ N∗ such that
β ≤ α; observe that α − β ∈ Nm. Then xα = xβxα−β ∈ I. Since N is
finite, it follows that all but finitely many monomials are in I.

(ii) Let I be the ideal generated by the set {xα : α ∈ T}. Suppose α ∈ T ∗.
Then α � β for all β ∈ T . It follows that xα /∈ I. Since K[x]/I is finite-
dimensional, all but finitely many monomials must be in I. It follows that
T ∗ is finite. If T ∗ = ∅, then 0 ∈ T . Since T is an antichain, T = {0}. But
then 1 ∈ I, so T is not full, so T ∗ must be nonempty. Finally, we know
that γ � α for all γ ∈ T . If β ∈ Nm such that β ≤ α, then we must have
γ � β for all γ ∈ T . Therefore β ∈ T ∗. It follows that T ∗ is Young-like.

(iii) Suppose α ∈ N . If β ∈ N∗ and β ≤ α, then β ∈ N . It follows that β � α
for all β ∈ N∗. Therefore α ∈ (N∗)∗, whence N ⊆ (N∗)∗.
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Conversely, suppose α ∈ (N∗)∗. Then β � α for all β ∈ N∗. Since N∗

is the set of minimal elements of Nm \ N , it follows that α ∈ N , whence
(N∗)∗ ⊆ N .

(iv) Suppose γ ∈ T . Suppose α ∈ Nm and α < γ. Since T is an antichain,
β � α for all β ∈ T . Therefore α ∈ T ∗. It follows that γ is minimal in
Nm \ T ∗, whence T ⊆ (T ∗)∗.

Conversely, suppose γ ∈ (T ∗)∗. Then γ is minimal in Nm \ T ∗. Note
that Nm \ T ∗ = {α ∈ Nm : ∃β ∈ T β ≤ α}, so there exists β ∈ T such
that β ≤ γ. Note that β /∈ T ∗. If γ /∈ T , then β < γ, contradicting the
minimality of γ. It follows that γ ∈ T , whence (T ∗)∗ ⊆ T . �

Theorem 4.10. Fix a Young-like set N ⊆ Nm. Suppose that B = K[x]/I, where
I is the ideal generated by xN

∗
and ε = (xα + I)α∈N . Let R be a K-algebra. Then

the following are equivalent:

(i) (R, ∂) is a D-ring,
(ii) ∂ is a generalized derivation of type N on R.

Proof. Let e : R→ D(R) be the map given by

e(r) =
∑
α∈N

∂α(r)⊗ εα

(i) =⇒ (ii). Since (R, ∂) is a D-ring, e is a K-algebra homomorphism. We must
show that the conditions of Definition 4.5 are satisfied.

(a) Immediate from Lemma 2.2.
(b) For any p, q ∈ R,

∑
α∈N

∂α(pq)⊗ εα = e(pq)

= e(p)e(q)

=
∑
β,γ∈N

∂β(p)∂γ(q)⊗ εβεγ

=
∑
α∈N

∑
β+γ=α

∂β(p)∂γ(q)⊗ εα.

The result follows from matching coefficients.
(c) By the choice of basis ε,

1R ⊗ ε0 = 1R ⊗ 1B = e(1R) =

`−1∑
i=0

∂i(1R)⊗ εi

and therefore ∂0(1R) = 1R.
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(ii) =⇒ (i). We must show that e is a K-algebra homomorphism. By Definition
4.5 and Lemma 4.6, it suffices to show that e is multiplicative. For any p, q ∈ R,

e(pq) =
∑
α∈N

∂α(pq)⊗ εα

=
∑
α∈N

∑
β+γ=α

∂β(p)∂γ(q)⊗ εα

=
∑
α∈N

∑
β+γ=α

∂β(p)∂γ(q)⊗ εβεγ

=
∑
β,γ∈N

∂β(p)∂γ(q)⊗ εβεγ

= e(p)e(q).

Therefore (R, ∂) is a D-ring. �

Corollary 4.11. Suppose that B is isomorphic to a K-algebra B′ of type N∗ for
some Young-like set N ⊆ Nm and (R, ∂) is a D-ring. Then ∂ is equivalent to a
generalized derivation of type N on R.

Proof. By Proposition 4.2, there exists a matrix M ∈ GL`(K) such that (R,M∂)
is a D′-ring. By definition, ∂ is equivalent to M∂. Since B′ is of type N∗, every D′-
operator is a generalized derivation of type N , and in particular, M∂ is a generalized
derivation of type N . �

5. Competency

The notion of competency of a local K-algebra was introduced in [1] as a tool in
the classification of D-operators which are not equivalent to generalized derivations.
Conjecture 20 of [1] claims that every finite-rank local K-algebra A is isomorphic
to a competetent K-algebra when K is algebraically closed. It is easy to see from
Table 1 of [5] that the conjecture holds when the rank of A is no more than 6.
We do not prove Conjecture 20, but we show that a weaker version always holds,
whether or not K is algebraically closed. Additionally, we demonstrate that for a
complete classification of D-operators up to equivalence it is sufficient to consider
only the case when B is local.

Proposition 5.1. Suppose that B ' B1 ⊕K B2 for some K-algebras B1 and B2

and that ε corresponds to the union of bases ε1 and ε2 for B1 and B2 respectively.
Let D1 = (B1, ε

1) and D2 = (B2, ε
2). Then the following are equivalent:

(i) (R, ∂) is a D-ring,
(ii) (R, ∂) is both a D1-ring and a D2-ring.

Proof. Let dimK B1 = `1 and dimK B2 = `2; note that `1 + `2 = `. Without
loss of generality, assume that B = B1 ⊕K B2 and ε1 = (ε0, . . . , ε`1−1), while
ε2 = (ε`1 , . . . , ε`−1). Let D1 = (B1, ε

1) and D2 = (B2, ε
2). Observe that

D(R) = R⊗K (B1 ⊕B2) ' (R⊗K B1)⊕K (R⊗K B2) = D1(R)⊕K D2(R).

Without loss of generality, we also assume that D1(R)⊕K D2(R) = D(R).
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Define e1 : R→ D1(R) and e2 : R→ D2(R) by

e1(r) =

`1−1∑
i=0

∂i(r)⊗ εi

and

e2(r) =

`−1∑
i=`1

∂i(r)⊗ εi.

(i) =⇒ (ii) Let φ : D(R)→ D1(R) be the canonical projection map onto the first
coordinate via D1(R)⊕K D2(R). Note that φ is a K-algebra homomorphism.

We claim that the following diagram commutes:

R D(R)

D1(R)

e

e1 φ

It follows immediately from the definition of direct sum that for any r ∈ R,

φ(e(r)) = φ

(
`−1∑
i=0

∂i(r)⊗ εi

)
=

`1−1∑
i=0

∂i(r)⊗ εi = e1(r),

so e1 is a K-algebra homomorphism, and (R, ∂) is a D1-ring. Similarly, (R, ∂) is a
D2-ring.

(ii) =⇒ (i) Since e = e1 + e2, and e1 and e2 are K-algebra homomorphisms, e is
linear. By the definition of direct sum, εiεj = 0 whenever 0 ≤ i < `1 and `1 ≤ j < `.
Therefore

e(p)e(q) =

(
`−1∑
i=0

∂i(p)⊗ εi

)`−1∑
j=0

∂j(q)⊗ εj


=

`1−1∑
i=0

`1−1∑
j=0

∂i(p)∂j(q)⊗ εiεj +

`−1∑
i=`1

`−1∑
j=0

∂i(p)∂j(q)⊗ εiεj

= e1(p)e1(q) + e2(p)e2(q)

= e1(pq) + e2(pq)

= e(pq).

Therefore e is a K-algebra homomorphism, so (R, ∂) is a D-ring. �

Fact 5.2. Every finite-rank K-algebra is isomorphic to a finite direct sum of local
K-algebras.

Corollary 5.3. Suppose that (R, ∂) is a D-ring. Then there exists a local K-algebra
B′, a basis ε′ for B′, and a D′-operator ∂′ on R such that ∂ is equivalent to ∂′.

Proof. By Fact 5.2, there exist local K-algebras B1, . . . , Bn such that B '
⊕n

i=1Bi.
Let M be the change of basis matrix from ε to some basis for B corresponding to
the union of bases ε1, . . . , εn for B. By Propositions 4.2 and 5.1, (R,M∂) is a
D1-ring. Setting B′ = B1, ε′ = ε1, and ∂′ = M∂ proves the result. �
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With these results behind us, we are ready to proceed to the discussion of com-
petency. Recall the following definitions (repeated here to correct minor errors)
from [1]:

Definition 5.4. Let N ⊆ Nm be a Young-like set. If α ∈ N satisfies α+β /∈ N for
all nonzero β ∈ Nm, then we say that α is a boundary point of N . Otherwise, we
say that α is an interior point of N . The set of boundary points of N , called the
boundary of N , is denoted by ∂N ; similarly, the interior of N is denoted by N̊ .

Definition 5.5. Let I be an ideal of K[x] such that K[x]/I. Let A = K[x]/I. We
say that A is competent if there exists a Young-like set N ⊆ Nm such that

(a) xα ∈ I for all α ∈ Nm \N ,
(b) there exists a set S ⊆ ∂N such that {xα + I : α ∈ ∂N} ⊆ SpanK{xα + I :

α ∈ S}, the elements (xα + I)α∈S∪N̊ are distinct, and the set {xα + I : α ∈
S ∪ N̊} is linearly independent in A.

It was noted in Definition 14 of [1] that if A is competent, then {xα+I : α ∈ S∪N̊}
is a basis for A, and S ∪ N̊ is Young-like.

Remark 5.6. Proposition 17 of [1] showed that when B is local and competent
and (∂′β)β∈N are generalized derivations of type N on some ring R, then defining

operators (∂α)α∈S∪N̊ on R by

∂α = ∂′α +
∑

β∈∂N\S

λβα∂
′
β ,

where λβα ∈ K is the unique scalar such that

xα+β + I =
∑

γ∈N̊∪S

λβαxγ + I

gives a D-ring (R, ∂).

We now state a weaker condition than competency and show that it holds for
all local K-algebras.

Definition 5.7. Define a total order � on Nm as follows. Let α, β ∈ Nm. Assume
that |α| ≤ |β| and α 6= β.

• If |α| < |β|, then α ≺ β.
• If |α| = |β|, let γ = α − β. Let ` be minimal such that γ` 6= 0. If γ` < 0,

then α ≺ β. If γ` > 0, then α � β.

Note that � in fact defines a well-ordering on Nm.

Notation 5.8. We define the following notation for any N ⊆ Nm, β ∈ Nm, I an
ideal of K[x].

• ‖N‖ := sup{|α| : α ∈ N}.
• For i ∈ N, Ni := {α ∈ N : |α| = i} and N≥i := {α ∈ N : |α| ≥ i}. N≤i,
N>i, and N<i are similar.

• For β ∈ Nm, N≺β := {α ∈ N : α ≺ β}. N�β , N�β , and N�β are similar.
• xN := {xα : α ∈ N} and xN + I := {xα + I : α ∈ N}.

Note that while |xN | = |N |, it it not necessarily the case that |xN + I| = |N |. We
shall also denote the m-tuple (0, 0, . . . , 0) by 0.

Lemma 5.9. Let α, β ∈ Nm. If α ≺ β, then α+ η ≺ β + η for every η ∈ Nm.
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Proof. Let η ∈ Nm. If |α| < |β|, then |α + η| = |α| + |η| < |β| + |η| = |β + η|, so
α+η ≺ β+η. If |α| = |β|, let γ = α−β and let ` ∈ N be minimal such that γ` 6= 0.
Since α ≺ β, we must have γ` < 0. Note that (α + η) − (β + η) = α − β = γ and
|α+ η| = |β + η|, so α+ η ≺ β + η. �

Definition 5.10. Let N be a finite subset of Nm. Suppose that P(N) holds for
some property P. We say that N is maximal with respect to � and P if for all
finite subsets M of Nm such that P(M) holds, one of the following holds:

(a) M ⊆ N ,
(b) writing N \ (N ∩M) = {n1 ≺ · · · ≺ na} and M \ (N ∩M) = {m1 ≺ · · · ≺

mb}, we have ni � mi for all 1 ≤ i ≤ min(a, b).

Remark 5.11. We are particularly interested in constructing monomial bases, which
can be indexed by subsets of Nm corresponding to powers of monomials, for quo-
tients of ideals of polynomial algebras. Given such a K-vector space and a finite
set N ⊆ Nm which corresponds to a spanning set, one can construct a basis max-
imal with respect to � by iterating through N in descending order according to
�, adding elements if their corresponding monomials are not in the span of their
successors. This fact will be used in the proof of Propositions 5.13 and 5.14.

Definition 5.12. Let A = K[x]/I be a K-algebra. We say that A is weakly
competent if there exists a Young-like set M such that

(a) the set {xα + I : α ∈M} is a basis for A
(b) xα ∈ I for all α ∈ Nm with |α| > ‖M‖
(c) for all β ∈ Nm, xβ ∈ SpanK xM�β .

Proposition 5.13. Let B = K[x]/I be a K-algebra. If B is competent, then B is
weakly competent.

Proof. Suppose that B is competent. Let N be as in Definition 5.5. Choose S ⊆
∂N to be maximal under � such that condition (b) of Definition 5.5 holds. Let

M = S ∪ N̊ . We will show that M satisfies the conditions of Definition 5.12.

(a) Immediate from Definition 5.5.
(b) Suppose that α ∈ Nm and |α| > ‖M‖. Consider the case when α ∈ N .

Since α /∈ M , α /∈ N̊ and α 6∈ S; hence, α ∈ ∂N \ S. If xα /∈ I, then there
is some element β ∈ S such that (M \ {β}) ∪ {α} corresponds to a basis
for B. Since |α| > ‖M‖, this contradicts the maximality of S with respect
to �. Thus either xα ∈ I or α /∈ N , and in the latter case we must have
xα ∈ I by competency.

(c) The result is trivial for β ∈ Nm \ N and β ∈ N̊ ∪ S. This leaves only the
case when β ∈ ∂N \ S, which follows by the maximality of S. �

Theorem 5.14. Every finite-rank, local K-algebra is isomorphic to a weakly com-
petent K-algebra.

Proof. Let A be a finite-rank, localK-algebra. Let m be the maximal ideal of A. Let
m = dimK(m/m2). Let v1, v2, . . . , vm ∈ m such that {v1 +m2, v2 +m2, . . . , vm+m2}
is a basis for m/m2. Let v = (v1, v2, . . . , vm).

For each i ∈ N, define Si = {vα : α ∈ Nmi }. Note that Si ⊆ mi. Let S̄i =
{x+ mi+1 : x ∈ Si}. We claim that S̄i spans mi/mi+1. This is clearly the case for
i = 0, 1. Inductively, assume that S̄i spans mi/mi+1 for some i ∈ N. Then every
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element of mi can be written as
∑
α∈Nmi

bαvα+u, where each bα ∈ K and u ∈ mi+1.

Also, every element of m can be written as
∑m
j=1 cjvj +w, where each cj ∈ K and

w ∈ m2. Multiplying these sums together shows that every element of mi+1 can be
written as

∑
β∈Nmi+1

dβvβ + y, where each dβ ∈ K and y ∈ mi+2. Hence S̄i spans

mi+1/mi+2, and the desired result follows.
Let Mi ⊆ Nmi be maximal under � such that vMi + mi+1 forms a basis for

mi/mi+1. Let Ti = vMi and T̄i = vMi + mi+1. Let M =
⋃
i∈NMi. We claim that

M is Young-like. We will show that for all α ∈ Nm, if there exists β < α with
β 6∈ M , then α 6∈ N , which is an equivalent condition. Accordingly, let α ∈ Nm
and suppose that such a β exists. Then β 6∈ M|β|, so vβ + m|β|+1 ∈ SpanK T̄i. By

minimality of Mi, vβ + m|β|+1 is in fact in the span of elements with component
degree less than β under ≺. Since α > β, we have vα = vβvγ for some γ ∈ Nm with
|γ| = |α−β|. By Lemma 5.9, vα+m|α|+1 is in the span of elements with component
degree less than α under ≺, so α 6∈ M|α|; hence, α 6∈ M . This establishes that M
is Young-like.

We now show that vα = 0 for all α ∈ Nm with vα > ‖M‖. Suppose that
η ∈ Nm and |η| > ‖M‖. Then for all γ ∈ Nm with |γ| = |η|, γ 6∈ M ⊇ M|η|. By

construction, this implies that M|η| = ∅. Therefore T|η| = vM|η| = ∅, so M̄|η| = ∅.
Since M̄|η| is a basis for m|η|/m|η|+1, it follows that m|η|/m|η|+1 = 0. Therefore

m|η| = m|η|+1 = 0. Hence vη = 0.
We now show that vM is a basis for A. Since A is finitely generated as a K-

module, A is Artinian; hence, m is nilpotent. It follows easily that vM spans A.
As for linear independence, suppose that

∑
α∈N cαvα = 0, where each cα ∈ K. We

claim that cα = 0 for all α ∈ M . Reducing this sum modulo m = m1, we have
that c01̄ = 0 in m0/m1; since {1 + m1} is a basis for m0/m1, we must have c0 = 0.
Inductively, assume that there is some i ∈ N≥1 such that cα = 0 for all α ∈ Nm<i.
Then we have

∑
α∈N≥i cαvα = 0. Reducing modulo mi+1, we have

∑
α∈Ni cαv̄α = 0

in mi/mi+1. Since the image of vMi is a basis for mi/mi+1, we must have cα = 0
for all α ∈ Mi. Therefore cα = 0 for all α ∈ M , which shows that vM is linearly
independent.

We now show that for all α ∈ Nm, vα ∈ SpanK vM≥|α| . Suppose α ∈ Nm. If
vα = 0, then the result is trivial. Otherwise, let ` be maximal such that vα ∈ m`.
(Since m is nilpotent, such a maximal ` must exist.) Then vα =

∑
γ∈M`

cγv
γ + w

for some scalars cγ and w ∈ m`+1, since the image of vM` is a basis for m`/m`+1. It

follows easily that vα ∈ SpanK{vM≥`}. Furthermore, vα ∈ m|α|, so by maximality,
` ≥ |α|. Therefore vα ∈ SpanK{vM≥|α|}.

Define φ : K[x]→ A by 1 7→ 1 and xi 7→ vi for 1 ≤ i ≤ m and extend by linearity
and distributivity. Then φ is a surjectiveK-algebra homomorphism, so A ' K[x]/I,
where I := kerφ. By the above construction, K[x]/I is weakly competent. �
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